File size: 9,521 Bytes
aca9a0c
 
1ad7e58
aca9a0c
55f4d70
aca9a0c
 
828190b
aca9a0c
 
 
 
 
b42c9ff
aca9a0c
 
4211404
aca9a0c
 
 
 
ab1a0c8
 
 
 
4211404
aca9a0c
 
 
 
 
 
 
 
 
 
 
 
de45929
aca9a0c
 
 
 
a2d883f
aca9a0c
 
 
 
 
 
 
 
 
 
 
 
 
2480d21
9fd6b97
aca9a0c
 
9fd6b97
aca9a0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a5b2b2
aca9a0c
 
 
 
 
 
 
 
eee2e10
aca9a0c
 
 
0ee99b8
aca9a0c
 
0ee99b8
aca9a0c
0ee99b8
aca9a0c
 
 
 
 
 
 
de45929
aca9a0c
 
 
7eeb535
89eb067
 
 
 
3204d18
7eeb535
 
 
 
 
 
 
 
 
9fd6b97
7eeb535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fd6b97
7eeb535
 
 
b42c9ff
 
 
7eeb535
 
 
 
 
 
 
 
 
 
 
 
 
aca9a0c
0ee99b8
7eeb535
 
 
aca9a0c
7eeb535
 
 
 
 
aca9a0c
7eeb535
aca9a0c
7eeb535
 
 
 
 
4c2c8e2
 
 
 
3204d18
 
 
 
 
aca9a0c
7eeb535
3204d18
aca9a0c
 
4211404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ee99b8
ab1a0c8
c12bb85
f9ea51a
 
c12bb85
 
ab1a0c8
 
 
 
 
c12bb85
ab1a0c8
 
 
 
 
4211404
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import gradio as gr
import json
import logging
import multiprocessing
import os
import pickle
import threading
import time
from collections import Counter, defaultdict
from concurrent.futures import ProcessPoolExecutor, as_completed, wait, FIRST_COMPLETED
from datetime import datetime
from typing import Any, Dict, List, Tuple
from warnings import warn
import gc

import numpy as np
from huggingface_hub import HfApi
from bigcodebench.data import get_bigcodebench, get_bigcodebench_hash, load_solutions
from bigcodebench.data.utils import CACHE_DIR
from bigcodebench.eval import PASS, compatible_eval_result, estimate_pass_at_k, untrusted_check
from bigcodebench.gen.util import trusted_check
from apscheduler.schedulers.background import BackgroundScheduler

REPO_ID = "bigcode/bigcodebench-evaluator"
HF_TOKEN = os.environ.get("HF_TOKEN", None)
API = HfApi(token=HF_TOKEN)
Result = Tuple[str, List[bool]]


def get_groundtruth(n_workers, problems, hashcode, check_gt_only, max_as_limit, max_data_limit, max_stack_limit, min_time_limit):
    cache_file = os.path.join(CACHE_DIR, f"{hashcode}.pkl")
    if os.path.exists(cache_file):
        if check_gt_only:
            with open(cache_file, "rb") as f:
                return pickle.load(f)

    os.makedirs(CACHE_DIR, exist_ok=True)
    tbegin = time.time()
    
    with ProcessPoolExecutor(max_workers=n_workers) as executor:
        futures = []
        n_samples = 0
        expected_time = dict()
        
        for problem in problems.values():
            args = (
                problem["complete_prompt"] + "\n" + problem["canonical_solution"],
                problem["test"],
                problem["task_id"],
                max_as_limit,
                max_data_limit,
                max_stack_limit,
                min_time_limit,
            )
            
            futures.append(executor.submit(trusted_check, *args))
            n_samples += 1

        for future in as_completed(futures):
            result = future.result()
            expected_time[result["task_id"]] = result["time"]
        
    if any(expected_time.values()):
        with open(cache_file, "wb") as f:
            pickle.dump(expected_time, f)

    return expected_time


def check_correctness(
    completion_id: int,
    problem: Dict[str, Any],
    solution: str,
    max_as_limit: float,
    max_data_limit: float,
    max_stack_limit: float,
    identifier=None,
    min_time_limit: float = 0.1,
    gt_time_limit: float = 2.0,
) -> Dict[str, Result]:  
    ret = {
        "completion_id": completion_id,
        "task_id": problem["task_id"],
        "_identifier": identifier,
        "solution": solution,
    }
    ret["base"] = untrusted_check(
        solution,
        problem["test"],
        problem["entry_point"],
        max_as_limit,
        max_data_limit,
        max_stack_limit,
        min_time_limit,
        gt_time_limit,
    )
    return ret


def evaluate(
    split: str,
    subset: str,
    samples: str,
    pass_k: str="1,5,10",
    parallel: int = -1,
    min_time_limit: float = 1,
    max_as_limit: int = 30 * 1024,
    max_data_limit: int = 30 * 1024,
    max_stack_limit: int = 10,
    check_gt_only: bool = False,
    no_gt: bool = False,
):
    pass_k = [int(k.strip()) for k in pass_k.split(',') if k.strip().isdigit()]
    if parallel < 1:
        n_workers = max(1, multiprocessing.cpu_count() // 2)
    else:
        n_workers = parallel

    if check_gt_only:
        samples = "__dummy__.jsonl"

    extra = subset + "_" if subset != "full" else ""

    problems = get_bigcodebench(subset=subset)
    dataset_hash = get_bigcodebench_hash(subset=subset)
    
    if not no_gt:
        expected_time = get_groundtruth(n_workers, problems, dataset_hash, check_gt_only, max_as_limit, max_data_limit, max_stack_limit, min_time_limit)
    else:
        expected_time = {task_id: None for task_id in problems}
    
    gt_pass_rate = np.mean([1 if v is not None else 0 for k, v in expected_time.items() if k in problems])
    failed_tasks = [k for k, v in expected_time.items() if v is None and k in problems]
    
    pass_at_k = dict()
    results = {
        "date": datetime.now().strftime("%Y-%m-%d %H:%M"),
        "eval": {},
    }
    
    if not check_gt_only:

        with ProcessPoolExecutor(max_workers=n_workers) as executor:
            futures = []
            completion_id = Counter()
            n_samples = 0
            eval_results = defaultdict(list)  # task_id ->
            remainings = set()

            for sample in load_solutions(samples):
                task_id = sample["task_id"]
                
                if task_id not in problems:
                    continue
                solution = (
                    sample["solution"]
                    if "solution" in sample
                    else problems[task_id]["complete_prompt"] + sample["completion"]
                )
                if "sanitized-calibrated" in samples:
                    solution = problems[task_id]["code_prompt"] + "\n    pass\n" + solution
                remainings.add(sample["_identifier"])
                args = (
                    completion_id[task_id],
                    problems[task_id],
                    solution,
                    max_as_limit,
                    max_data_limit,
                    max_stack_limit,
                    sample["_identifier"],
                    min_time_limit,
                    expected_time[task_id] if expected_time[task_id] else 20
                )
                futures.append(executor.submit(check_correctness, *args))
                completion_id[task_id] += 1
                n_samples += 1

            assert n_samples == len(remainings), "Missing problems in unfinished"
            assert len(completion_id) == len(problems), "Missing problems in samples"

            for future in as_completed(futures):
                result = future.result()
                remainings.remove(result["_identifier"])
                eval_results[result["task_id"]].append(result)
                del future, result
                gc.collect()
        
        # sort the results for each problem by completion_id
        for task_id, task_results in eval_results.items():
            task_results.sort(key=lambda x: x["completion_id"])
            results["eval"][task_id] = []
            for res in task_results:
                stat, details = res["base"]
                results["eval"][task_id].append(
                    {
                        "task_id": task_id,
                        "solution": res["solution"],
                        "status": stat,
                        "details": details,
                    }
                )

        # Calculate pass@k.
        total = np.array([len(r) for k, r in results["eval"].items() if k in problems])
        base_correct = []

        for key, res in results["eval"].items():
            if key not in problems:
                continue
            bc = sum([r["status"] == PASS for r in res])
            base_correct.append(bc)

        base_correct = np.array(base_correct)

        pass_at_k.update({
            f"pass@{k}": estimate_pass_at_k(total, base_correct, k).mean()
            for k in pass_k
            if total.min() >= k
        })

        del problems, futures
        gc.collect()
        
    pass_at_k["model"] = os.path.basename(samples).split("--bigcodebench-")[0]
    pass_at_k["split"] = split
    pass_at_k["subset"] = subset
    pass_at_k["calibrated"] = "sanitized-calibrated" in samples
    pass_at_k["gt_pass_rate"] = gt_pass_rate
    pass_at_k["failed_tasks"] = failed_tasks
    
    return results, pass_at_k


# def run_gradio():
interface = gr.Interface(
    fn=evaluate,
    inputs=[
        gr.Dropdown(["complete", "instruct"], label="BigCodeBench Split"),
        gr.Dropdown(["full", "hard"], label="BigCodeBench Subset"),
        gr.File(label="Samples Path (.jsonl)"),
        gr.Textbox(label="Pass k Values (comma-separated)", value="1,5,10"),
        gr.Slider(-1, multiprocessing.cpu_count(), step=1, label="Parallel Workers", value=-1),
        gr.Slider(0.1, 10, step=0.1, label="Min Time Limit", value=1),
        gr.Slider(1, 100 * 1024, step=1024, label="Max AS Limit", value=30 * 1024),
        gr.Slider(1, 100 * 1024, step=1024, label="Max Data Limit", value=30 * 1024),
        gr.Slider(1, 100, step=1, label="Max Stack Limit", value=10),
        gr.Checkbox(label="Check GT Only"),
        gr.Checkbox(label="No GT"),
    ],
    outputs=[
        gr.JSON(label="Results"),
        gr.JSON(label="Eval Results"),
    ],
    # concurrency_limit=None
)
interface.queue(default_concurrency_limit=None)
# interface.launch(show_error=True)


def preload_gt():
    evaluate(split="complete", subset="full", samples="", check_gt_only=True)
    evaluate(split="complete", subset="hard", samples="", check_gt_only=True)


def restart_space():
    logging.info(f"Restarting space with repo ID: {REPO_ID}")
    try:
        # Now restart the space
        API.restart_space(repo_id=REPO_ID, token=HF_TOKEN)
        preload_gt()
        logging.info("Space restarted successfully.")
    except Exception as e:
        logging.error(f"Failed to restart space: {e}")


# if __name__ == "__main__":
preload_gt()
# run_gradio()

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", hours=1)  # Restart every 1h
logging.info("Scheduler initialized to restart space every 1 hour.")
scheduler.start()