|
import gradio as gr |
|
import numpy as np |
|
import h5py |
|
import faiss |
|
import json |
|
from transformers import AutoTokenizer, AutoModel |
|
from sklearn.feature_extraction.text import TfidfVectorizer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
import re |
|
import spacy |
|
import torch |
|
import nltk |
|
|
|
|
|
nltk.download('wordnet') |
|
|
|
|
|
try: |
|
nlp = spacy.load("en_core_web_sm") |
|
except IOError: |
|
print("Downloading spacy model...") |
|
spacy.cli.download("en_core_web_sm") |
|
nlp = spacy.load("en_core_web_sm") |
|
|
|
def load_data(): |
|
try: |
|
with h5py.File('patent_embeddings.h5', 'r') as f: |
|
embeddings = f['embeddings'][:] |
|
patent_numbers = f['patent_numbers'][:] |
|
|
|
metadata = {} |
|
texts = [] |
|
with open('patent_metadata.jsonl', 'r') as f: |
|
for line in f: |
|
data = json.loads(line) |
|
metadata[data['patent_number']] = data |
|
texts.append(data['text']) |
|
|
|
print(f"Embedding shape: {embeddings.shape}") |
|
print(f"Number of patent numbers: {len(patent_numbers)}") |
|
print(f"Number of metadata entries: {len(metadata)}") |
|
|
|
return embeddings, patent_numbers, metadata, texts |
|
except FileNotFoundError as e: |
|
print(f"Error: Could not find file. {e}") |
|
raise |
|
except Exception as e: |
|
print(f"An unexpected error occurred while loading data: {e}") |
|
raise |
|
|
|
embeddings, patent_numbers, metadata, texts = load_data() |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained('anferico/bert-for-patents') |
|
bert_model = AutoModel.from_pretrained('anferico/bert-for-patents') |
|
|
|
def encode_texts(texts, max_length=512): |
|
inputs = tokenizer(texts, padding=True, truncation=True, max_length=max_length, return_tensors='pt') |
|
with torch.no_grad(): |
|
outputs = bert_model(**inputs) |
|
embeddings = outputs.last_hidden_state.mean(dim=1) |
|
return embeddings.numpy() |
|
|
|
|
|
if embeddings.shape[1] != encode_texts(["test"]).shape[1]: |
|
print("Embedding dimensions do not match. Rebuilding FAISS index.") |
|
|
|
embeddings = encode_texts(texts) |
|
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True) |
|
|
|
|
|
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True) |
|
|
|
|
|
index = faiss.IndexFlatIP(embeddings.shape[1]) |
|
index.add(embeddings) |
|
|
|
|
|
tfidf_vectorizer = TfidfVectorizer(stop_words='english') |
|
tfidf_matrix = tfidf_vectorizer.fit_transform(texts) |
|
|
|
def extract_key_features(text): |
|
|
|
doc = nlp(text) |
|
technical_terms = [] |
|
for token in doc: |
|
if token.dep_ in ('amod', 'compound') or token.ent_type_ in ('PRODUCT', 'ORG', 'GPE', 'NORP'): |
|
technical_terms.append(token.text.lower()) |
|
noun_phrases = [chunk.text.lower() for chunk in doc.noun_chunks] |
|
feature_phrases = [sent.text.lower() for sent in doc.sents if re.search(r'(comprising|including|consisting of|deformable|insulation|heat-resistant|memory foam|high-temperature)', sent.text, re.IGNORECASE)] |
|
|
|
all_features = technical_terms + noun_phrases + feature_phrases |
|
return list(set(all_features)) |
|
|
|
def compare_features(query_features, patent_features): |
|
common_features = set(query_features) & set(patent_features) |
|
similarity_score = len(common_features) / max(len(query_features), len(patent_features)) |
|
return common_features, similarity_score |
|
|
|
def hybrid_search(query, top_k=5): |
|
print(f"Original query: {query}") |
|
|
|
query_features = extract_key_features(query) |
|
|
|
|
|
query_embedding = encode_texts([query])[0] |
|
query_embedding = query_embedding / np.linalg.norm(query_embedding) |
|
|
|
|
|
semantic_distances, semantic_indices = index.search(np.array([query_embedding]).astype('float32'), top_k * 2) |
|
|
|
|
|
query_tfidf = tfidf_vectorizer.transform([query]) |
|
tfidf_similarities = cosine_similarity(query_tfidf, tfidf_matrix).flatten() |
|
tfidf_indices = tfidf_similarities.argsort()[-top_k * 2:][::-1] |
|
|
|
|
|
combined_results = {} |
|
for i, idx in enumerate(semantic_indices[0]): |
|
patent_number = patent_numbers[idx].decode('utf-8') |
|
text = metadata[patent_number]['text'] |
|
patent_features = extract_key_features(text) |
|
common_features, feature_similarity = compare_features(query_features, patent_features) |
|
combined_results[patent_number] = { |
|
'score': semantic_distances[0][i] * 1.0 + tfidf_similarities[idx] * 0.5 + feature_similarity, |
|
'common_features': common_features, |
|
'text': text |
|
} |
|
|
|
for idx in tfidf_indices: |
|
patent_number = patent_numbers[idx].decode('utf-8') |
|
if patent_number not in combined_results: |
|
text = metadata[patent_number]['text'] |
|
patent_features = extract_key_features(text) |
|
common_features, feature_similarity = compare_features(query_features, patent_features) |
|
combined_results[patent_number] = { |
|
'score': tfidf_similarities[idx] * 1.0 + feature_similarity, |
|
'common_features': common_features, |
|
'text': text |
|
} |
|
|
|
|
|
top_results = sorted(combined_results.items(), key=lambda x: x[1]['score'], reverse=True)[:top_k] |
|
|
|
results = [] |
|
for patent_number, data in top_results: |
|
result = f"Patent Number: {patent_number}\n" |
|
result += f"Text: {data['text'][:200]}...\n" |
|
result += f"Combined Score: {data['score']:.4f}\n" |
|
result += f"Common Key Features: {', '.join(data['common_features'])}\n\n" |
|
results.append(result) |
|
|
|
return "\n".join(results) |
|
|
|
|
|
iface = gr.Interface( |
|
fn=hybrid_search, |
|
inputs=[ |
|
gr.Textbox(lines=2, placeholder="Enter your patent query here..."), |
|
gr.Slider(minimum=1, maximum=20, step=1, value=5, label="Top K Results"), |
|
], |
|
outputs=gr.Textbox(lines=10, label="Search Results"), |
|
title="Patent Similarity Search", |
|
description="Enter a patent description to find similar patents based on key features." |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |
|
|
|
|