|
import gradio as gr |
|
import numpy as np |
|
import h5py |
|
import faiss |
|
import json |
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
def load_data(): |
|
with h5py.File('patent_embeddings.h5', 'r') as f: |
|
embeddings = f['embeddings'][:] |
|
patent_numbers = f['patent_numbers'][:] |
|
|
|
metadata = {} |
|
with open('patent_metadata.jsonl', 'r') as f: |
|
for line in f: |
|
data = json.loads(line) |
|
metadata[data['patent_number']] = data |
|
|
|
return embeddings, patent_numbers, metadata |
|
|
|
embeddings, patent_numbers, metadata = load_data() |
|
|
|
|
|
index = faiss.IndexFlatL2(embeddings.shape[1]) |
|
index.add(embeddings) |
|
|
|
|
|
model = SentenceTransformer('all-MiniLM-L6-v2') |
|
|
|
def search(query, top_k=5): |
|
|
|
query_embedding = model.encode([query])[0] |
|
|
|
|
|
distances, indices = index.search(np.array([query_embedding]), top_k) |
|
|
|
results = [] |
|
for i, idx in enumerate(indices[0]): |
|
patent_number = patent_numbers[idx] |
|
patent_data = metadata[patent_number] |
|
result = f"Patent Number: {patent_number}\n" |
|
result += f"Abstract: {patent_data['abstract'][:200]}...\n" |
|
result += f"Similarity Score: {1 - distances[0][i]:.4f}\n\n" |
|
results.append(result) |
|
|
|
return "\n".join(results) |
|
|
|
|
|
iface = gr.Interface( |
|
fn=search, |
|
inputs=gr.Textbox(lines=2, placeholder="Enter your search query here..."), |
|
outputs=gr.Textbox(lines=10, label="Search Results"), |
|
title="Patent Similarity Search", |
|
description="Enter a query to find similar patents based on their embeddings." |
|
) |
|
|
|
iface.launch() |
|
|