Spaces:
Runtime error
Runtime error
import urllib.request | |
import fitz | |
import re | |
import numpy as np | |
import tensorflow_hub as hub | |
import openai | |
import gradio as gr | |
import os | |
from sklearn.neighbors import NearestNeighbors | |
def download_pdf(url, output_path): | |
urllib.request.urlretrieve(url, output_path) | |
def preprocess(text): | |
text = text.replace('\n', ' ') | |
text = re.sub('\s+', ' ', text) | |
return text | |
def pdf_to_text(path, start_page=1, end_page=None): | |
doc = fitz.open(path) | |
total_pages = doc.page_count | |
if end_page is None: | |
end_page = total_pages | |
text_list = [] | |
for i in range(start_page-1, end_page): | |
text = doc.load_page(i).get_text("text") | |
text = preprocess(text) | |
text_list.append(text) | |
doc.close() | |
return text_list | |
def text_to_chunks(texts, word_length=150, start_page=1): | |
text_toks = [t.split(' ') for t in texts] | |
page_nums = [] | |
chunks = [] | |
for idx, words in enumerate(text_toks): | |
for i in range(0, len(words), word_length): | |
chunk = words[i:i+word_length] | |
if (i+word_length) > len(words) and (len(chunk) < word_length) and ( | |
len(text_toks) != (idx+1)): | |
text_toks[idx+1] = chunk + text_toks[idx+1] | |
continue | |
chunk = ' '.join(chunk).strip() | |
chunk = f'[Page no. {idx+start_page}]' + ' ' + '"' + chunk + '"' | |
chunks.append(chunk) | |
return chunks | |
class SemanticSearch: | |
def __init__(self): | |
self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4') | |
self.fitted = False | |
def fit(self, data, batch=1000, n_neighbors=5): | |
self.data = data | |
self.embeddings = self.get_text_embedding(data, batch=batch) | |
n_neighbors = min(n_neighbors, len(self.embeddings)) | |
self.nn = NearestNeighbors(n_neighbors=n_neighbors) | |
self.nn.fit(self.embeddings) | |
self.fitted = True | |
def __call__(self, text, return_data=True): | |
inp_emb = self.use([text]) | |
neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0] | |
if return_data: | |
return [self.data[i] for i in neighbors] | |
else: | |
return neighbors | |
def get_text_embedding(self, texts, batch=1000): | |
embeddings = [] | |
for i in range(0, len(texts), batch): | |
text_batch = texts[i:(i+batch)] | |
emb_batch = self.use(text_batch) | |
embeddings.append(emb_batch) | |
embeddings = np.vstack(embeddings) | |
return embeddings | |
def load_recommender(path, start_page=1): | |
global recommender | |
texts = pdf_to_text(path, start_page=start_page) | |
chunks = text_to_chunks(texts, start_page=start_page) | |
recommender.fit(chunks) | |
return 'Corpus Loaded.' | |
def generate_text(openAI_key, prompt, model="gpt-3.5-turbo"): | |
openai.api_key = openAI_key | |
temperature=0.7 | |
max_tokens=256 | |
top_p=1 | |
frequency_penalty=0 | |
presence_penalty=0 | |
if model == "text-davinci-003": | |
completions = openai.Completion.create( | |
engine=model, | |
prompt=prompt, | |
max_tokens=max_tokens, | |
n=1, | |
stop=None, | |
temperature=temperature, | |
) | |
message = completions.choices[0].text | |
else: | |
message = openai.ChatCompletion.create( | |
model=model, | |
messages=[ | |
{"role": "system", "content": "You are a helpful assistant."}, | |
{"role": "assistant", "content": "Here is some initial assistant message."}, | |
{"role": "user", "content": prompt} | |
], | |
temperature=.3, | |
max_tokens=max_tokens, | |
top_p=top_p, | |
frequency_penalty=frequency_penalty, | |
presence_penalty=presence_penalty, | |
).choices[0].message['content'] | |
return message | |
def generate_answer(question, openAI_key, model): | |
topn_chunks = recommender(question) | |
prompt = 'search results:\n\n' | |
for c in topn_chunks: | |
prompt += c + '\n\n' | |
prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\ | |
"Cite each reference using [ Page Number] notation. "\ | |
"Only answer what is asked. The answer should be short and concise. \n\nQuery: " | |
prompt += f"{question}\nAnswer:" | |
answer = generate_text(openAI_key, prompt, model) | |
return answer | |
def question_answer(chat_history, url, file, question, openAI_key, model): | |
try: | |
if openAI_key.strip()=='': | |
return '[ERROR]: Please enter your Open AI Key. Get your key here : https://platform.openai.com/account/api-keys' | |
if url.strip() == '' and file is None: | |
return '[ERROR]: Both URL and PDF is empty. Provide at least one.' | |
if url.strip() != '' and file is not None: | |
return '[ERROR]: Both URL and PDF is provided. Please provide only one (either URL or PDF).' | |
if model is None or model =='': | |
return '[ERROR]: You have not selected any model. Please choose an LLM model.' | |
if url.strip() != '': | |
glob_url = url | |
download_pdf(glob_url, 'corpus.pdf') | |
load_recommender('corpus.pdf') | |
else: | |
old_file_name = file.name | |
file_name = file.name | |
file_name = file_name[:-12] + file_name[-4:] | |
os.rename(old_file_name, file_name) | |
load_recommender(file_name) | |
if question.strip() == '': | |
return '[ERROR]: Question field is empty' | |
if model == "text-davinci-003" or model == "gpt-4" or model == "gpt-4-32k": | |
answer = generate_answer_text_davinci_003(question, openAI_key) | |
else: | |
answer = generate_answer(question, openAI_key, model) | |
chat_history.append([question, answer]) | |
return chat_history | |
except openai.error.InvalidRequestError as e: | |
return f'[ERROR]: Either you do not have access to GPT4 or you have exhausted your quota!' | |
def generate_text_text_davinci_003(openAI_key,prompt, engine="text-davinci-003"): | |
openai.api_key = openAI_key | |
completions = openai.Completion.create( | |
engine=engine, | |
prompt=prompt, | |
max_tokens=512, | |
n=1, | |
stop=None, | |
temperature=0.7, | |
) | |
message = completions.choices[0].text | |
return message | |
def generate_answer_text_davinci_003(question,openAI_key): | |
topn_chunks = recommender(question) | |
prompt = "" | |
prompt += 'search results:\n\n' | |
for c in topn_chunks: | |
prompt += c + '\n\n' | |
prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\ | |
"Cite each reference using [ Page Number] notation (every result has this number at the beginning). "\ | |
"Citation should be done at the end of each sentence. If the search results mention multiple subjects "\ | |
"with the same name, create separate answers for each. Only include information found in the results and "\ | |
"don't add any additional information. Make sure the answer is correct and don't output false content. "\ | |
"If the text does not relate to the query, simply state 'Found Nothing'. Ignore outlier "\ | |
"search results which has nothing to do with the question. Only answer what is asked. The "\ | |
"answer should be short and concise. \n\nQuery: {question}\nAnswer: " | |
prompt += f"Query: {question}\nAnswer:" | |
answer = generate_text_text_davinci_003(openAI_key, prompt,"text-davinci-003") | |
return answer | |
# pre-defined questions | |
questions = [ | |
"What did the study investigate?", | |
"Can you provide a summary of this paper?", | |
"what are the methodologies used in this study?", | |
"what are the data intervals used in this study? Give me the start dates and end dates?", | |
"what are the main limitations of this study?", | |
"what are the main shortcomings of this study?", | |
"what are the main findings of the study?", | |
"what are the main results of the study?", | |
"what are the main contributions of this study?", | |
"what is the conclusion of this paper?", | |
"what are the input features used in this study?", | |
"what is the dependent variable in this study?", | |
] | |
recommender = SemanticSearch() | |
title = 'PDF GPT Turbo' | |
description = """ PDF GPT Turbo allows you to chat with your PDF files. It gives hallucination free response even cites the page number in square brackets([Page No.]) where the information is located, adding credibility to the responses.""" | |
with gr.Blocks(css="""#chatbot { font-size: 14px; min-height: 1200; }""") as demo: | |
gr.Markdown(f'<center><h3>{title}</h3></center>') | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Group(): | |
gr.Markdown(f'<p style="text-align:center">Get your Open AI API key <a href="https://platform.openai.com/account/api-keys">here</a></p>') | |
with gr.Accordion("API Key"): | |
openAI_key = gr.Textbox(label='Enter your OpenAI API key here', password=True) | |
url = gr.Textbox(label='Enter PDF URL here (Example: https://arxiv.org/pdf/1706.03762.pdf )') | |
gr.Markdown("<center><h4>OR<h4></center>") | |
file = gr.File(label='Upload your PDF/ Research Paper / Book here', file_types=['.pdf']) | |
question = gr.Textbox(label='Enter your question here') | |
gr.Examples( | |
[[q] for q in questions], | |
inputs=[question], | |
label="PRE-DEFINED QUESTIONS: Click on a question to auto-fill the input box, then press Enter!", | |
) | |
model = gr.Radio([ | |
'gpt-3.5-turbo', | |
'gpt-3.5-turbo-16k', | |
'gpt-3.5-turbo-0613', | |
'gpt-3.5-turbo-16k-0613', | |
'text-davinci-003', | |
'gpt-4', | |
'gpt-4-32k' | |
], label='Select Model', default='gpt-3.5-turbo') | |
btn = gr.Button(value='Submit') | |
btn.style(full_width=True) | |
with gr.Group(): | |
chatbot = gr.Chatbot(placeholder="Chat History", label="Chat History", lines=50, elem_id="chatbot") | |
# Bind the click event of the button to the question_answer function | |
btn.click( | |
question_answer, | |
inputs=[chatbot, url, file, question, openAI_key, model], | |
outputs=[chatbot], | |
) | |
demo.launch() | |