Spaces:
Build error
Build error
Commit
·
ed9d4fe
1
Parent(s):
3f569a6
Upload 3 files
Browse files- cascade_mask_rcnn_hrnetv2p_w32_20e.py +269 -0
- cascade_mask_rcnn_hrnetv2p_w32_20e_v2.py +289 -0
- epoch_36.pth +3 -0
cascade_mask_rcnn_hrnetv2p_w32_20e.py
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
model = dict(
|
3 |
+
type='CascadeRCNN',
|
4 |
+
num_stages=3,
|
5 |
+
pretrained='open-mmlab://msra/hrnetv2_w32',
|
6 |
+
backbone=dict(
|
7 |
+
type='HRNet',
|
8 |
+
extra=dict(
|
9 |
+
stage1=dict(
|
10 |
+
num_modules=1,
|
11 |
+
num_branches=1,
|
12 |
+
block='BOTTLENECK',
|
13 |
+
num_blocks=(4, ),
|
14 |
+
num_channels=(64, )),
|
15 |
+
stage2=dict(
|
16 |
+
num_modules=1,
|
17 |
+
num_branches=2,
|
18 |
+
block='BASIC',
|
19 |
+
num_blocks=(4, 4),
|
20 |
+
num_channels=(32, 64)),
|
21 |
+
stage3=dict(
|
22 |
+
num_modules=4,
|
23 |
+
num_branches=3,
|
24 |
+
block='BASIC',
|
25 |
+
num_blocks=(4, 4, 4),
|
26 |
+
num_channels=(32, 64, 128)),
|
27 |
+
stage4=dict(
|
28 |
+
num_modules=3,
|
29 |
+
num_branches=4,
|
30 |
+
block='BASIC',
|
31 |
+
num_blocks=(4, 4, 4, 4),
|
32 |
+
num_channels=(32, 64, 128, 256)))),
|
33 |
+
neck=dict(type='HRFPN', in_channels=[32, 64, 128, 256], out_channels=256),
|
34 |
+
rpn_head=dict(
|
35 |
+
type='RPNHead',
|
36 |
+
in_channels=256,
|
37 |
+
feat_channels=256,
|
38 |
+
anchor_scales=[8],
|
39 |
+
anchor_ratios=[0.5, 1.0, 2.0],
|
40 |
+
anchor_strides=[4, 8, 16, 32, 64],
|
41 |
+
target_means=[.0, .0, .0, .0],
|
42 |
+
target_stds=[1.0, 1.0, 1.0, 1.0],
|
43 |
+
loss_cls=dict(
|
44 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
45 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
|
46 |
+
bbox_roi_extractor=dict(
|
47 |
+
type='SingleRoIExtractor',
|
48 |
+
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
|
49 |
+
out_channels=256,
|
50 |
+
featmap_strides=[4, 8, 16, 32]),
|
51 |
+
bbox_head=[
|
52 |
+
dict(
|
53 |
+
type='SharedFCBBoxHead',
|
54 |
+
num_fcs=2,
|
55 |
+
in_channels=256,
|
56 |
+
fc_out_channels=1024,
|
57 |
+
roi_feat_size=7,
|
58 |
+
num_classes=81,
|
59 |
+
target_means=[0., 0., 0., 0.],
|
60 |
+
target_stds=[0.1, 0.1, 0.2, 0.2],
|
61 |
+
reg_class_agnostic=True,
|
62 |
+
loss_cls=dict(
|
63 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
64 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
|
65 |
+
dict(
|
66 |
+
type='SharedFCBBoxHead',
|
67 |
+
num_fcs=2,
|
68 |
+
in_channels=256,
|
69 |
+
fc_out_channels=1024,
|
70 |
+
roi_feat_size=7,
|
71 |
+
num_classes=81,
|
72 |
+
target_means=[0., 0., 0., 0.],
|
73 |
+
target_stds=[0.05, 0.05, 0.1, 0.1],
|
74 |
+
reg_class_agnostic=True,
|
75 |
+
loss_cls=dict(
|
76 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
77 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
|
78 |
+
dict(
|
79 |
+
type='SharedFCBBoxHead',
|
80 |
+
num_fcs=2,
|
81 |
+
in_channels=256,
|
82 |
+
fc_out_channels=1024,
|
83 |
+
roi_feat_size=7,
|
84 |
+
num_classes=81,
|
85 |
+
target_means=[0., 0., 0., 0.],
|
86 |
+
target_stds=[0.033, 0.033, 0.067, 0.067],
|
87 |
+
reg_class_agnostic=True,
|
88 |
+
loss_cls=dict(
|
89 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
90 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
|
91 |
+
],
|
92 |
+
mask_roi_extractor=dict(
|
93 |
+
type='SingleRoIExtractor',
|
94 |
+
roi_layer=dict(type='RoIAlign', out_size=14, sample_num=2),
|
95 |
+
out_channels=256,
|
96 |
+
featmap_strides=[4, 8, 16, 32]),
|
97 |
+
mask_head=dict(
|
98 |
+
type='FCNMaskHead',
|
99 |
+
num_convs=4,
|
100 |
+
in_channels=256,
|
101 |
+
conv_out_channels=256,
|
102 |
+
num_classes=81,
|
103 |
+
loss_mask=dict(
|
104 |
+
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)))
|
105 |
+
# model training and testing settings
|
106 |
+
train_cfg = dict(
|
107 |
+
rpn=dict(
|
108 |
+
assigner=dict(
|
109 |
+
type='MaxIoUAssigner',
|
110 |
+
pos_iou_thr=0.7,
|
111 |
+
neg_iou_thr=0.3,
|
112 |
+
min_pos_iou=0.3,
|
113 |
+
ignore_iof_thr=-1),
|
114 |
+
sampler=dict(
|
115 |
+
type='RandomSampler',
|
116 |
+
num=256,
|
117 |
+
pos_fraction=0.5,
|
118 |
+
neg_pos_ub=-1,
|
119 |
+
add_gt_as_proposals=False),
|
120 |
+
allowed_border=0,
|
121 |
+
pos_weight=-1,
|
122 |
+
debug=False),
|
123 |
+
rpn_proposal=dict(
|
124 |
+
nms_across_levels=False,
|
125 |
+
nms_pre=2000,
|
126 |
+
nms_post=2000,
|
127 |
+
max_num=2000,
|
128 |
+
nms_thr=0.7,
|
129 |
+
min_bbox_size=0),
|
130 |
+
rcnn=[
|
131 |
+
dict(
|
132 |
+
assigner=dict(
|
133 |
+
type='MaxIoUAssigner',
|
134 |
+
pos_iou_thr=0.5,
|
135 |
+
neg_iou_thr=0.5,
|
136 |
+
min_pos_iou=0.5,
|
137 |
+
ignore_iof_thr=-1),
|
138 |
+
sampler=dict(
|
139 |
+
type='RandomSampler',
|
140 |
+
num=512,
|
141 |
+
pos_fraction=0.25,
|
142 |
+
neg_pos_ub=-1,
|
143 |
+
add_gt_as_proposals=True),
|
144 |
+
mask_size=28,
|
145 |
+
pos_weight=-1,
|
146 |
+
debug=False),
|
147 |
+
dict(
|
148 |
+
assigner=dict(
|
149 |
+
type='MaxIoUAssigner',
|
150 |
+
pos_iou_thr=0.6,
|
151 |
+
neg_iou_thr=0.6,
|
152 |
+
min_pos_iou=0.6,
|
153 |
+
ignore_iof_thr=-1),
|
154 |
+
sampler=dict(
|
155 |
+
type='RandomSampler',
|
156 |
+
num=512,
|
157 |
+
pos_fraction=0.25,
|
158 |
+
neg_pos_ub=-1,
|
159 |
+
add_gt_as_proposals=True),
|
160 |
+
mask_size=28,
|
161 |
+
pos_weight=-1,
|
162 |
+
debug=False),
|
163 |
+
dict(
|
164 |
+
assigner=dict(
|
165 |
+
type='MaxIoUAssigner',
|
166 |
+
pos_iou_thr=0.7,
|
167 |
+
neg_iou_thr=0.7,
|
168 |
+
min_pos_iou=0.7,
|
169 |
+
ignore_iof_thr=-1),
|
170 |
+
sampler=dict(
|
171 |
+
type='RandomSampler',
|
172 |
+
num=512,
|
173 |
+
pos_fraction=0.25,
|
174 |
+
neg_pos_ub=-1,
|
175 |
+
add_gt_as_proposals=True),
|
176 |
+
mask_size=28,
|
177 |
+
pos_weight=-1,
|
178 |
+
debug=False)
|
179 |
+
],
|
180 |
+
stage_loss_weights=[1, 0.5, 0.25])
|
181 |
+
test_cfg = dict(
|
182 |
+
rpn=dict(
|
183 |
+
nms_across_levels=False,
|
184 |
+
nms_pre=1000,
|
185 |
+
nms_post=1000,
|
186 |
+
max_num=1000,
|
187 |
+
nms_thr=0.7,
|
188 |
+
min_bbox_size=0),
|
189 |
+
rcnn=dict(
|
190 |
+
score_thr=0.05,
|
191 |
+
nms=dict(type='nms', iou_thr=0.5),
|
192 |
+
max_per_img=100,
|
193 |
+
mask_thr_binary=0.5))
|
194 |
+
# dataset settings
|
195 |
+
dataset_type = 'CocoDataset'
|
196 |
+
data_root = '/content/drive/My Drive/Mmdetection/'
|
197 |
+
img_norm_cfg = dict(
|
198 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
199 |
+
train_pipeline = [
|
200 |
+
dict(type='LoadImageFromFile'),
|
201 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
202 |
+
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
|
203 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
204 |
+
dict(type='Normalize', **img_norm_cfg),
|
205 |
+
dict(type='Pad', size_divisor=32),
|
206 |
+
dict(type='DefaultFormatBundle'),
|
207 |
+
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
|
208 |
+
]
|
209 |
+
test_pipeline = [
|
210 |
+
dict(type='LoadImageFromFile'),
|
211 |
+
dict(
|
212 |
+
type='MultiScaleFlipAug',
|
213 |
+
img_scale=(1333, 800),
|
214 |
+
flip=False,
|
215 |
+
transforms=[
|
216 |
+
dict(type='Resize', keep_ratio=True),
|
217 |
+
dict(type='RandomFlip'),
|
218 |
+
dict(type='Normalize', **img_norm_cfg),
|
219 |
+
dict(type='Pad', size_divisor=32),
|
220 |
+
dict(type='ImageToTensor', keys=['img']),
|
221 |
+
dict(type='Collect', keys=['img']),
|
222 |
+
])
|
223 |
+
]
|
224 |
+
data = dict(
|
225 |
+
imgs_per_gpu=2,
|
226 |
+
workers_per_gpu=2,
|
227 |
+
train=dict(
|
228 |
+
type=dataset_type,
|
229 |
+
ann_file='/content/drive/My Drive/chunk.json',
|
230 |
+
img_prefix='/content/drive/My Drive/chunk_images/',
|
231 |
+
pipeline=train_pipeline),
|
232 |
+
val=dict(
|
233 |
+
type=dataset_type,
|
234 |
+
ann_file=data_root + 'VOC2007/test.json',
|
235 |
+
img_prefix=data_root + 'VOC2007/Test/',
|
236 |
+
pipeline=test_pipeline),
|
237 |
+
test=dict(
|
238 |
+
type=dataset_type,
|
239 |
+
ann_file=data_root + 'VOC2007/test.json',
|
240 |
+
img_prefix=data_root + 'VOC2007/Test/',
|
241 |
+
pipeline=test_pipeline))
|
242 |
+
# evaluation = dict(interval=1, metric=['bbox'])
|
243 |
+
# optimizer
|
244 |
+
optimizer = dict(type='SGD', lr=0.0012, momentum=0.9, weight_decay=0.0001)
|
245 |
+
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
|
246 |
+
# learning policy
|
247 |
+
lr_config = dict(
|
248 |
+
policy='step',
|
249 |
+
warmup='linear',
|
250 |
+
warmup_iters=500,
|
251 |
+
warmup_ratio=1.0 / 3,
|
252 |
+
step=[16, 19])
|
253 |
+
checkpoint_config = dict(interval=1,create_symlink=False)
|
254 |
+
# yapf:disable
|
255 |
+
log_config = dict(
|
256 |
+
interval=50,
|
257 |
+
hooks=[
|
258 |
+
dict(type='TextLoggerHook'),
|
259 |
+
# dict(type='TensorboardLoggerHook')
|
260 |
+
])
|
261 |
+
# yapf:enable
|
262 |
+
# runtime settings
|
263 |
+
total_epochs = 36
|
264 |
+
dist_params = dict(backend='nccl')
|
265 |
+
log_level = 'INFO'
|
266 |
+
work_dir = '/content/drive/My Drive/Mmdetection/new_chunk_cascade_mask_rcnn_hrnetv2p_w32_20e'
|
267 |
+
load_from = None
|
268 |
+
resume_from = '/content/drive/My Drive/Mmdetection/new_chunk_cascade_mask_rcnn_hrnetv2p_w32_20e/epoch_30.pth'
|
269 |
+
workflow = [('train', 1)]
|
cascade_mask_rcnn_hrnetv2p_w32_20e_v2.py
ADDED
@@ -0,0 +1,289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model settings
|
2 |
+
model = dict(
|
3 |
+
type='CascadeRCNN',
|
4 |
+
# num_stages=3,
|
5 |
+
pretrained='open-mmlab://msra/hrnetv2_w32',
|
6 |
+
backbone=dict(
|
7 |
+
type='HRNet',
|
8 |
+
extra=dict(
|
9 |
+
stage1=dict(
|
10 |
+
num_modules=1,
|
11 |
+
num_branches=1,
|
12 |
+
block='BOTTLENECK',
|
13 |
+
num_blocks=(4, ),
|
14 |
+
num_channels=(64, )),
|
15 |
+
stage2=dict(
|
16 |
+
num_modules=1,
|
17 |
+
num_branches=2,
|
18 |
+
block='BASIC',
|
19 |
+
num_blocks=(4, 4),
|
20 |
+
num_channels=(32, 64)),
|
21 |
+
stage3=dict(
|
22 |
+
num_modules=4,
|
23 |
+
num_branches=3,
|
24 |
+
block='BASIC',
|
25 |
+
num_blocks=(4, 4, 4),
|
26 |
+
num_channels=(32, 64, 128)),
|
27 |
+
stage4=dict(
|
28 |
+
num_modules=3,
|
29 |
+
num_branches=4,
|
30 |
+
block='BASIC',
|
31 |
+
num_blocks=(4, 4, 4, 4),
|
32 |
+
num_channels=(32, 64, 128, 256)))),
|
33 |
+
neck=dict(type='HRFPN', in_channels=[32, 64, 128, 256], out_channels=256),
|
34 |
+
rpn_head=dict(
|
35 |
+
type='RPNHead',
|
36 |
+
in_channels=256,
|
37 |
+
feat_channels=256,
|
38 |
+
anchor_generator=dict(
|
39 |
+
type='AnchorGenerator',
|
40 |
+
scales=[8],
|
41 |
+
ratios=[0.5, 1.0, 2.0],
|
42 |
+
strides=[4, 8, 16, 32, 64]),
|
43 |
+
bbox_coder=dict(
|
44 |
+
type='DeltaXYWHBBoxCoder',
|
45 |
+
target_means=[.0, .0, .0, .0],
|
46 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
47 |
+
loss_cls=dict(
|
48 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
49 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
|
50 |
+
roi_head=dict(
|
51 |
+
type='CascadeRoIHead',
|
52 |
+
num_stages=3,
|
53 |
+
stage_loss_weights=[1, 0.5, 0.25],
|
54 |
+
bbox_roi_extractor=dict(
|
55 |
+
type='SingleRoIExtractor',
|
56 |
+
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2), # may conflict
|
57 |
+
out_channels=256,
|
58 |
+
featmap_strides=[4, 8, 16, 32]),
|
59 |
+
bbox_head=[
|
60 |
+
dict(
|
61 |
+
type='Shared2FCBBoxHead',
|
62 |
+
# num_fcs=2,
|
63 |
+
in_channels=256,
|
64 |
+
fc_out_channels=1024,
|
65 |
+
roi_feat_size=7,
|
66 |
+
num_classes=80,
|
67 |
+
bbox_coder=dict(
|
68 |
+
type='DeltaXYWHBBoxCoder',
|
69 |
+
target_means=[0., 0., 0., 0.],
|
70 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
71 |
+
reg_class_agnostic=True,
|
72 |
+
loss_cls=dict(
|
73 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
74 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
|
75 |
+
dict(
|
76 |
+
type='Shared2FCBBoxHead',
|
77 |
+
# num_fcs=2,
|
78 |
+
in_channels=256,
|
79 |
+
fc_out_channels=1024,
|
80 |
+
roi_feat_size=7,
|
81 |
+
num_classes=80,
|
82 |
+
bbox_coder=dict(
|
83 |
+
type='DeltaXYWHBBoxCoder',
|
84 |
+
target_means=[0., 0., 0., 0.],
|
85 |
+
target_stds=[0.05, 0.05, 0.1, 0.1]),
|
86 |
+
reg_class_agnostic=True,
|
87 |
+
loss_cls=dict(
|
88 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
89 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
|
90 |
+
dict(
|
91 |
+
type='Shared2FCBBoxHead',
|
92 |
+
# num_fcs=2,
|
93 |
+
in_channels=256,
|
94 |
+
fc_out_channels=1024,
|
95 |
+
roi_feat_size=7,
|
96 |
+
num_classes=80,
|
97 |
+
bbox_coder=dict(
|
98 |
+
type='DeltaXYWHBBoxCoder',
|
99 |
+
target_means=[0., 0., 0., 0.],
|
100 |
+
target_stds=[0.033, 0.033, 0.067, 0.067]),
|
101 |
+
reg_class_agnostic=True,
|
102 |
+
loss_cls=dict(
|
103 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
104 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
|
105 |
+
],
|
106 |
+
mask_roi_extractor=dict(
|
107 |
+
type='SingleRoIExtractor',
|
108 |
+
roi_layer=dict(type='RoIAlign', out_size=14, sample_num=2),
|
109 |
+
out_channels=256,
|
110 |
+
featmap_strides=[4, 8, 16, 32]),
|
111 |
+
mask_head=dict(
|
112 |
+
type='FCNMaskHead',
|
113 |
+
num_convs=4,
|
114 |
+
in_channels=256,
|
115 |
+
conv_out_channels=256,
|
116 |
+
num_classes=80,
|
117 |
+
loss_mask=dict(
|
118 |
+
type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)))
|
119 |
+
)
|
120 |
+
|
121 |
+
# model training and testing settings
|
122 |
+
train_cfg = dict(
|
123 |
+
rpn=dict(
|
124 |
+
assigner=dict(
|
125 |
+
type='MaxIoUAssigner',
|
126 |
+
pos_iou_thr=0.7,
|
127 |
+
neg_iou_thr=0.3,
|
128 |
+
min_pos_iou=0.3,
|
129 |
+
ignore_iof_thr=-1),
|
130 |
+
sampler=dict(
|
131 |
+
type='RandomSampler',
|
132 |
+
num=256,
|
133 |
+
pos_fraction=0.5,
|
134 |
+
neg_pos_ub=-1,
|
135 |
+
add_gt_as_proposals=False),
|
136 |
+
allowed_border=0,
|
137 |
+
pos_weight=-1,
|
138 |
+
debug=False),
|
139 |
+
rpn_proposal=dict(
|
140 |
+
nms_across_levels=False,
|
141 |
+
nms_pre=2000,
|
142 |
+
nms_post=2000,
|
143 |
+
max_num=2000,
|
144 |
+
nms_thr=0.7,
|
145 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
146 |
+
max_per_img=2000,
|
147 |
+
min_bbox_size=0),
|
148 |
+
rcnn=[
|
149 |
+
dict(
|
150 |
+
assigner=dict(
|
151 |
+
type='MaxIoUAssigner',
|
152 |
+
pos_iou_thr=0.5,
|
153 |
+
neg_iou_thr=0.5,
|
154 |
+
min_pos_iou=0.5,
|
155 |
+
ignore_iof_thr=-1),
|
156 |
+
sampler=dict(
|
157 |
+
type='RandomSampler',
|
158 |
+
num=512,
|
159 |
+
pos_fraction=0.25,
|
160 |
+
neg_pos_ub=-1,
|
161 |
+
add_gt_as_proposals=True),
|
162 |
+
mask_size=28,
|
163 |
+
pos_weight=-1,
|
164 |
+
debug=False),
|
165 |
+
dict(
|
166 |
+
assigner=dict(
|
167 |
+
type='MaxIoUAssigner',
|
168 |
+
pos_iou_thr=0.6,
|
169 |
+
neg_iou_thr=0.6,
|
170 |
+
min_pos_iou=0.6,
|
171 |
+
ignore_iof_thr=-1),
|
172 |
+
sampler=dict(
|
173 |
+
type='RandomSampler',
|
174 |
+
num=512,
|
175 |
+
pos_fraction=0.25,
|
176 |
+
neg_pos_ub=-1,
|
177 |
+
add_gt_as_proposals=True),
|
178 |
+
mask_size=28,
|
179 |
+
pos_weight=-1,
|
180 |
+
debug=False),
|
181 |
+
dict(
|
182 |
+
assigner=dict(
|
183 |
+
type='MaxIoUAssigner',
|
184 |
+
pos_iou_thr=0.7,
|
185 |
+
neg_iou_thr=0.7,
|
186 |
+
min_pos_iou=0.7,
|
187 |
+
ignore_iof_thr=-1),
|
188 |
+
sampler=dict(
|
189 |
+
type='RandomSampler',
|
190 |
+
num=512,
|
191 |
+
pos_fraction=0.25,
|
192 |
+
neg_pos_ub=-1,
|
193 |
+
add_gt_as_proposals=True),
|
194 |
+
mask_size=28,
|
195 |
+
pos_weight=-1,
|
196 |
+
debug=False)
|
197 |
+
],
|
198 |
+
stage_loss_weights=[1, 0.5, 0.25])
|
199 |
+
test_cfg = dict(
|
200 |
+
rpn=dict(
|
201 |
+
nms_across_levels=False,
|
202 |
+
nms_pre=1000,
|
203 |
+
nms_post=1000,
|
204 |
+
max_num=1000,
|
205 |
+
nms_thr=0.7,
|
206 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
207 |
+
max_per_img=1000,
|
208 |
+
min_bbox_size=0),
|
209 |
+
rcnn=dict(
|
210 |
+
score_thr=0.05,
|
211 |
+
nms=dict(type='nms', iou_thr=0.5),
|
212 |
+
max_per_img=100,
|
213 |
+
mask_thr_binary=0.5))
|
214 |
+
# dataset settings
|
215 |
+
dataset_type = 'CocoDataset'
|
216 |
+
data_root = '/content/drive/My Drive/Mmdetection/'
|
217 |
+
img_norm_cfg = dict(
|
218 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
219 |
+
train_pipeline = [
|
220 |
+
dict(type='LoadImageFromFile'),
|
221 |
+
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
|
222 |
+
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
|
223 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
224 |
+
dict(type='Normalize', **img_norm_cfg),
|
225 |
+
dict(type='Pad', size_divisor=32),
|
226 |
+
dict(type='DefaultFormatBundle'),
|
227 |
+
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
|
228 |
+
]
|
229 |
+
test_pipeline = [
|
230 |
+
dict(type='LoadImageFromFile'),
|
231 |
+
dict(
|
232 |
+
type='MultiScaleFlipAug',
|
233 |
+
img_scale=(1333, 800),
|
234 |
+
flip=False,
|
235 |
+
transforms=[
|
236 |
+
dict(type='Resize', keep_ratio=True),
|
237 |
+
dict(type='RandomFlip'),
|
238 |
+
dict(type='Normalize', **img_norm_cfg),
|
239 |
+
dict(type='Pad', size_divisor=32),
|
240 |
+
dict(type='ImageToTensor', keys=['img']),
|
241 |
+
dict(type='Collect', keys=['img']),
|
242 |
+
])
|
243 |
+
]
|
244 |
+
data = dict(
|
245 |
+
imgs_per_gpu=2,
|
246 |
+
workers_per_gpu=2,
|
247 |
+
train=dict(
|
248 |
+
type=dataset_type,
|
249 |
+
ann_file='/content/drive/My Drive/chunk.json',
|
250 |
+
img_prefix='/content/drive/My Drive/chunk_images/',
|
251 |
+
pipeline=train_pipeline),
|
252 |
+
val=dict(
|
253 |
+
type=dataset_type,
|
254 |
+
ann_file=data_root + 'VOC2007/test.json',
|
255 |
+
img_prefix=data_root + 'VOC2007/Test/',
|
256 |
+
pipeline=test_pipeline),
|
257 |
+
test=dict(
|
258 |
+
type=dataset_type,
|
259 |
+
ann_file=data_root + 'VOC2007/test.json',
|
260 |
+
img_prefix=data_root + 'VOC2007/Test/',
|
261 |
+
pipeline=test_pipeline))
|
262 |
+
# evaluation = dict(interval=1, metric=['bbox'])
|
263 |
+
# optimizer
|
264 |
+
optimizer = dict(type='SGD', lr=0.0012, momentum=0.9, weight_decay=0.0001)
|
265 |
+
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
|
266 |
+
# learning policy
|
267 |
+
lr_config = dict(
|
268 |
+
policy='step',
|
269 |
+
warmup='linear',
|
270 |
+
warmup_iters=500,
|
271 |
+
warmup_ratio=1.0 / 3,
|
272 |
+
step=[16, 19])
|
273 |
+
checkpoint_config = dict(interval=1,create_symlink=False)
|
274 |
+
# yapf:disable
|
275 |
+
log_config = dict(
|
276 |
+
interval=50,
|
277 |
+
hooks=[
|
278 |
+
dict(type='TextLoggerHook'),
|
279 |
+
# dict(type='TensorboardLoggerHook')
|
280 |
+
])
|
281 |
+
# yapf:enable
|
282 |
+
# runtime settings
|
283 |
+
total_epochs = 36
|
284 |
+
dist_params = dict(backend='nccl')
|
285 |
+
log_level = 'INFO'
|
286 |
+
work_dir = '/content/drive/My Drive/Mmdetection/new_chunk_cascade_mask_rcnn_hrnetv2p_w32_20e'
|
287 |
+
load_from = None
|
288 |
+
resume_from = '/content/drive/My Drive/Mmdetection/new_chunk_cascade_mask_rcnn_hrnetv2p_w32_20e/epoch_30.pth'
|
289 |
+
workflow = [('train', 1)]
|
epoch_36.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d6db8dc5d8d7b041d4086b26d7bd5d1b65411e2fdc1cd862816ab51ddab7686
|
3 |
+
size 663519823
|