File size: 12,888 Bytes
4dccf1d
 
 
 
 
 
 
 
 
9248120
 
 
 
 
 
dc5f6ab
9248120
4dccf1d
dc5f6ab
 
 
4dccf1d
 
 
 
 
 
9248120
 
 
 
 
 
 
 
 
 
 
4dccf1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc5f6ab
4dccf1d
 
dc5f6ab
4dccf1d
dc5f6ab
4dccf1d
 
 
dc5f6ab
 
 
 
 
 
 
4dccf1d
dc5f6ab
 
 
 
 
4dccf1d
dc5f6ab
 
 
 
 
 
 
 
 
 
 
4dccf1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
683fa1b
4dccf1d
 
 
 
 
683fa1b
 
 
4dccf1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7367d47
4dccf1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9248120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dccf1d
9248120
4dccf1d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import os
import logging
from typing import Tuple
from dotenv import load_dotenv
import gradio as gr
import numpy as np
from PIL import Image
import random
from db import compute_elo_scores, get_all_votes
import json
from pathlib import Path
from uuid import uuid4
import logging
import threading
import time
from datasets import load_dataset
from huggingface_hub import CommitScheduler

# Load datasets
dataset = load_dataset("bgsys/background-removal-arena-test", split='train')

# Configure logging
logging.basicConfig(level=logging.INFO)

# Load environment variables from .env file
load_dotenv()

# Directory and path setup for JSON dataset
JSON_DATASET_DIR = Path("data/json_dataset")
JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)

# Initialize CommitScheduler for Hugging Face
scheduler = CommitScheduler(
    repo_id="bgsys/votes_datasets_test",
    repo_type="dataset",
    folder_path=JSON_DATASET_DIR,
    path_in_repo="data",
)


def fetch_elo_scores():
    """Fetch and log Elo scores."""
    try:
        elo_scores = compute_elo_scores()
        logging.info("Elo scores successfully computed.")
        return elo_scores
    except Exception as e:
        logging.error("Error computing Elo scores: %s", str(e))
        return None

def update_rankings_table():
    """Update and return the rankings table based on Elo scores."""
    elo_scores = fetch_elo_scores()
    if elo_scores:
        rankings = [
            ["Photoroom", int(elo_scores.get("Photoroom", 1000))],
            #["Clipdrop", int(elo_scores.get("Clipdrop", 1000))],
            ["RemoveBG", int(elo_scores.get("RemoveBG", 1000))],
            ["BRIA RMBG 2.0", int(elo_scores.get("BRIA RMBG 2.0", 1000))],
        ]
        rankings.sort(key=lambda x: x[1], reverse=True)
        return rankings
    else:
        return [
            ["Photoroom", -1],
            #["Clipdrop", -1],
            ["RemoveBG", -1],
            ["BRIA RMBG 2.0", -1],
        ]

def select_new_image():
    """Select a new image and its segmented versions."""
    max_attempts = 10
    last_image_index = None

    for _ in range(max_attempts):
        available_indices = [i for i in range(len(dataset)) if i != last_image_index]
        
        if not available_indices:
            logging.error("No available images to select from.")
            return None

        random_index = random.choice(available_indices)
        sample = dataset[random_index]
        input_image = sample['original_image']

        segmented_images = [sample['clipdrop_image'], sample['bria_image'],
                            sample['photoroom_image'], sample['removebg_image']]
        segmented_sources = ['Clipdrop', 'BRIA RMBG 2.0', 'Photoroom', 'RemoveBG']
        
        if segmented_images.count(None) > 2:
            logging.error("Not enough segmented images found for: %s. Resampling another image.", sample['original_filename'])
            last_image_index = random_index
            continue

        try:
            selected_indices = random.sample([i for i, img in enumerate(segmented_images) if img is not None], 2)
            model_a_index, model_b_index = selected_indices
            model_a_output_image = segmented_images[model_a_index]
            model_b_output_image = segmented_images[model_b_index]
            model_a_name = segmented_sources[model_a_index]
            model_b_name = segmented_sources[model_b_index]
            return (sample['original_image'], input_image, model_a_output_image, model_a_output_image,
                    model_b_output_image, model_b_output_image, model_a_name, model_b_name)
        except Exception as e:
            logging.error("Error processing images: %s. Resampling another image.", str(e))
            last_image_index = random_index

    logging.error("Failed to select a new image after %d attempts.", max_attempts)
    return None

def get_notice_markdown():
    """Generate the notice markdown with dynamic vote count."""
    total_votes = len(get_all_votes())
    return f"""
    # ⚔️  Background Removal Arena: Compare & Test the Best Background Removal Models

    ## 📜 How It Works
    - **Blind Test**: You will see two images with their background removed from two anonymous background removal models (Clipdrop, RemoveBG, Photoroom, BRIA RMBG 2.0).
    - **Vote for the Best**: Choose the best result, if none stand out choose "Tie". 

    ## 📊 Stats
    - **Total #votes**: {total_votes}

    ## 👇 Test now!
    """

def compute_mask_difference(segmented_a, segmented_b):
    """Compute the absolute difference between two image masks."""
    mask_a = np.asarray(segmented_a)
    mask_b = np.asarray(segmented_b)

    # Create a binary mask where non-transparent pixels are marked as 1
    mask_a_1d = np.where(mask_a[..., 3] != 0, 1, 0)
    mask_b_1d = np.where(mask_b[..., 3] != 0, 1, 0)

    # Compute the absolute difference between the masks
    return np.abs(mask_a_1d - mask_b_1d)

def gradio_interface():
    """Create and return the Gradio interface."""
    with gr.Blocks() as demo:
        gr.Markdown("# Background Removal Arena")

        with gr.Tabs() as tabs:
            with gr.Tab("⚔️ Arena (battle)", id=0):
                notice_markdown = gr.Markdown(get_notice_markdown(), elem_id="notice_markdown")

                (fpath_input, input_image, fpath_a, segmented_a, fpath_b, segmented_b,
                 a_name, b_name) = select_new_image()
                model_a_name = gr.State(a_name)
                model_b_name = gr.State(b_name)
                fpath_input = gr.State(fpath_input)
                fpath_a = gr.State(fpath_a)
                fpath_b = gr.State(fpath_b)

                # Compute the absolute difference between the masks
                mask_difference = compute_mask_difference(segmented_a, segmented_b)

                with gr.Row():
                    image_a_display = gr.Image(
                        value=segmented_a,
                        type="pil",
                        label="Model A",
                        width=500,
                        height=500
                    )
                    input_image_display = gr.AnnotatedImage(
                        value=(input_image, [(mask_difference > 0, "Difference between masks")]),
                        label="Input Image",
                        width=500,
                        height=500
                    )
                    image_b_display = gr.Image(
                        value=segmented_b,
                        type="pil",
                        label="Model B",
                        width=500,
                        height=500
                    )
                tie = gr.State("Tie")
                with gr.Row():
                    vote_a_btn = gr.Button("👈  A is better")
                    vote_tie = gr.Button("🤝  Tie")
                    vote_b_btn = gr.Button("👉  B is better")

                
                vote_a_btn.click(
                    fn=lambda: vote_for_model("model_a", (fpath_input, fpath_a, fpath_b), model_a_name, model_b_name),
                    outputs=[
                        fpath_input, input_image_display, fpath_a, image_a_display, fpath_b, image_b_display, model_a_name, model_b_name, notice_markdown
                    ]
                )
                vote_b_btn.click(
                    fn=lambda: vote_for_model("model_b", (fpath_input, fpath_a, fpath_b), model_a_name, model_b_name),
                    outputs=[
                        fpath_input, input_image_display, fpath_a, image_a_display, fpath_b, image_b_display, model_a_name, model_b_name, notice_markdown
                    ]
                )
                vote_tie.click(
                    fn=lambda: vote_for_model("tie", (fpath_input, fpath_a, fpath_b), model_a_name, model_b_name),
                    outputs=[
                        fpath_input, input_image_display, fpath_a, image_a_display, fpath_b, image_b_display, model_a_name, model_b_name, notice_markdown
                    ]
                )
            
                def vote_for_model(choice, fpaths, model_a_name, model_b_name):
                    """Submit a vote for a model and return updated images and model names."""
                    logging.info("Voting for model: %s", choice)

                    vote_data = {
                        "image_id": fpaths[0].value,
                        "model_a": model_a_name.value,
                        "model_b": model_b_name.value,
                        "winner": choice,
                        "fpath_a": fpaths[1].value,  
                        "fpath_b": fpaths[2].value, 
                    }

                    try:
                        logging.debug("Adding vote data to the database: %s", vote_data)
                        from db import add_vote
                        result = add_vote(vote_data)
                        logging.info("Vote successfully recorded in the database with ID: %s", result["id"])
                    except Exception as e:
                        logging.error("Error recording vote: %s", str(e))

                    (new_fpath_input, new_input_image, new_fpath_a, new_segmented_a,
                     new_fpath_b, new_segmented_b, new_a_name, new_b_name) = select_new_image()
                    model_a_name.value = new_a_name
                    model_b_name.value = new_b_name
                    fpath_input.value = new_fpath_input
                    fpath_a.value = new_fpath_a
                    fpath_b.value = new_fpath_b

                    mask_difference = compute_mask_difference(new_segmented_a, new_segmented_b)

                    # Update the notice markdown with the new vote count
                    new_notice_markdown = get_notice_markdown()

                    return (fpath_input.value, (new_input_image, [(mask_difference, "Mask")]), fpath_a.value, new_segmented_a,
                            fpath_b.value, new_segmented_b, model_a_name.value, model_b_name.value, new_notice_markdown)
           
            with gr.Tab("🏆 Leaderboard", id=1) as leaderboard_tab:
                rankings_table = gr.Dataframe(
                    headers=["Model", "Ranking"],
                    value=update_rankings_table(),
                    label="Current Model Rankings",
                    column_widths=[180, 60],
                    row_count=4
                )

                leaderboard_tab.select(
                    fn=lambda: update_rankings_table(),
                    outputs=rankings_table
                )

            with gr.Tab("📊 Vote Data", id=2) as vote_data_tab:
                def update_vote_data():
                    votes = get_all_votes()
                    return [[vote.id, vote.image_id, vote.model_a, vote.model_b, vote.winner, vote.timestamp] for vote in votes]

                vote_table = gr.Dataframe(
                    headers=["ID", "Image ID", "Model A", "Model B", "Winner", "Timestamp"],
                    value=update_vote_data(),
                    label="Vote Data",
                    column_widths=[20, 150, 100, 100, 100, 150],
                    row_count=0
                )

                vote_data_tab.select(
                    fn=lambda: update_vote_data(),
                    outputs=vote_table
                )

    return demo

def dump_database_to_json():
    """Dump the database to a JSON file and upload it to Hugging Face."""
    votes = get_all_votes()
    json_data = [
        {
            "id": vote.id,
            "image_id": vote.image_id,
            "model_a": vote.model_a,
            "model_b": vote.model_b,
            "winner": vote.winner,
            "user_id": vote.user_id,
            "fpath_a": vote.fpath_a,
            "fpath_b": vote.fpath_b,
            "timestamp": vote.timestamp.isoformat()
        }
        for vote in votes
    ]

    json_file_path = JSON_DATASET_DIR / "votes.json"
    # Upload to Hugging Face
    with scheduler.lock:
        with json_file_path.open("w") as f:
            json.dump(json_data, f, indent=4)

    logging.info("Database dumped to JSON")

def schedule_dump_database(interval=60):
    """Schedule the database dump to JSON every specified interval in seconds."""
    def run():
        while True:
            logging.info("Starting database dump to JSON.")
            dump_database_to_json()
            logging.info("Database dump completed. Sleeping for %d seconds.", interval)
            time.sleep(interval)

    logging.info("Initializing database dump scheduler with interval: %d seconds.", interval)
    thread = threading.Thread(target=run, daemon=True)
    thread.start()
    logging.info("Database dump scheduler started.")

if __name__ == "__main__":
    schedule_dump_database()  # Start the periodic database dump
    demo = gradio_interface()
    demo.launch()