File size: 12,888 Bytes
4dccf1d 9248120 dc5f6ab 9248120 4dccf1d dc5f6ab 4dccf1d 9248120 4dccf1d dc5f6ab 4dccf1d dc5f6ab 4dccf1d dc5f6ab 4dccf1d dc5f6ab 4dccf1d dc5f6ab 4dccf1d dc5f6ab 4dccf1d 683fa1b 4dccf1d 683fa1b 4dccf1d 7367d47 4dccf1d 9248120 4dccf1d 9248120 4dccf1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
import os
import logging
from typing import Tuple
from dotenv import load_dotenv
import gradio as gr
import numpy as np
from PIL import Image
import random
from db import compute_elo_scores, get_all_votes
import json
from pathlib import Path
from uuid import uuid4
import logging
import threading
import time
from datasets import load_dataset
from huggingface_hub import CommitScheduler
# Load datasets
dataset = load_dataset("bgsys/background-removal-arena-test", split='train')
# Configure logging
logging.basicConfig(level=logging.INFO)
# Load environment variables from .env file
load_dotenv()
# Directory and path setup for JSON dataset
JSON_DATASET_DIR = Path("data/json_dataset")
JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)
# Initialize CommitScheduler for Hugging Face
scheduler = CommitScheduler(
repo_id="bgsys/votes_datasets_test",
repo_type="dataset",
folder_path=JSON_DATASET_DIR,
path_in_repo="data",
)
def fetch_elo_scores():
"""Fetch and log Elo scores."""
try:
elo_scores = compute_elo_scores()
logging.info("Elo scores successfully computed.")
return elo_scores
except Exception as e:
logging.error("Error computing Elo scores: %s", str(e))
return None
def update_rankings_table():
"""Update and return the rankings table based on Elo scores."""
elo_scores = fetch_elo_scores()
if elo_scores:
rankings = [
["Photoroom", int(elo_scores.get("Photoroom", 1000))],
#["Clipdrop", int(elo_scores.get("Clipdrop", 1000))],
["RemoveBG", int(elo_scores.get("RemoveBG", 1000))],
["BRIA RMBG 2.0", int(elo_scores.get("BRIA RMBG 2.0", 1000))],
]
rankings.sort(key=lambda x: x[1], reverse=True)
return rankings
else:
return [
["Photoroom", -1],
#["Clipdrop", -1],
["RemoveBG", -1],
["BRIA RMBG 2.0", -1],
]
def select_new_image():
"""Select a new image and its segmented versions."""
max_attempts = 10
last_image_index = None
for _ in range(max_attempts):
available_indices = [i for i in range(len(dataset)) if i != last_image_index]
if not available_indices:
logging.error("No available images to select from.")
return None
random_index = random.choice(available_indices)
sample = dataset[random_index]
input_image = sample['original_image']
segmented_images = [sample['clipdrop_image'], sample['bria_image'],
sample['photoroom_image'], sample['removebg_image']]
segmented_sources = ['Clipdrop', 'BRIA RMBG 2.0', 'Photoroom', 'RemoveBG']
if segmented_images.count(None) > 2:
logging.error("Not enough segmented images found for: %s. Resampling another image.", sample['original_filename'])
last_image_index = random_index
continue
try:
selected_indices = random.sample([i for i, img in enumerate(segmented_images) if img is not None], 2)
model_a_index, model_b_index = selected_indices
model_a_output_image = segmented_images[model_a_index]
model_b_output_image = segmented_images[model_b_index]
model_a_name = segmented_sources[model_a_index]
model_b_name = segmented_sources[model_b_index]
return (sample['original_image'], input_image, model_a_output_image, model_a_output_image,
model_b_output_image, model_b_output_image, model_a_name, model_b_name)
except Exception as e:
logging.error("Error processing images: %s. Resampling another image.", str(e))
last_image_index = random_index
logging.error("Failed to select a new image after %d attempts.", max_attempts)
return None
def get_notice_markdown():
"""Generate the notice markdown with dynamic vote count."""
total_votes = len(get_all_votes())
return f"""
# ⚔️ Background Removal Arena: Compare & Test the Best Background Removal Models
## 📜 How It Works
- **Blind Test**: You will see two images with their background removed from two anonymous background removal models (Clipdrop, RemoveBG, Photoroom, BRIA RMBG 2.0).
- **Vote for the Best**: Choose the best result, if none stand out choose "Tie".
## 📊 Stats
- **Total #votes**: {total_votes}
## 👇 Test now!
"""
def compute_mask_difference(segmented_a, segmented_b):
"""Compute the absolute difference between two image masks."""
mask_a = np.asarray(segmented_a)
mask_b = np.asarray(segmented_b)
# Create a binary mask where non-transparent pixels are marked as 1
mask_a_1d = np.where(mask_a[..., 3] != 0, 1, 0)
mask_b_1d = np.where(mask_b[..., 3] != 0, 1, 0)
# Compute the absolute difference between the masks
return np.abs(mask_a_1d - mask_b_1d)
def gradio_interface():
"""Create and return the Gradio interface."""
with gr.Blocks() as demo:
gr.Markdown("# Background Removal Arena")
with gr.Tabs() as tabs:
with gr.Tab("⚔️ Arena (battle)", id=0):
notice_markdown = gr.Markdown(get_notice_markdown(), elem_id="notice_markdown")
(fpath_input, input_image, fpath_a, segmented_a, fpath_b, segmented_b,
a_name, b_name) = select_new_image()
model_a_name = gr.State(a_name)
model_b_name = gr.State(b_name)
fpath_input = gr.State(fpath_input)
fpath_a = gr.State(fpath_a)
fpath_b = gr.State(fpath_b)
# Compute the absolute difference between the masks
mask_difference = compute_mask_difference(segmented_a, segmented_b)
with gr.Row():
image_a_display = gr.Image(
value=segmented_a,
type="pil",
label="Model A",
width=500,
height=500
)
input_image_display = gr.AnnotatedImage(
value=(input_image, [(mask_difference > 0, "Difference between masks")]),
label="Input Image",
width=500,
height=500
)
image_b_display = gr.Image(
value=segmented_b,
type="pil",
label="Model B",
width=500,
height=500
)
tie = gr.State("Tie")
with gr.Row():
vote_a_btn = gr.Button("👈 A is better")
vote_tie = gr.Button("🤝 Tie")
vote_b_btn = gr.Button("👉 B is better")
vote_a_btn.click(
fn=lambda: vote_for_model("model_a", (fpath_input, fpath_a, fpath_b), model_a_name, model_b_name),
outputs=[
fpath_input, input_image_display, fpath_a, image_a_display, fpath_b, image_b_display, model_a_name, model_b_name, notice_markdown
]
)
vote_b_btn.click(
fn=lambda: vote_for_model("model_b", (fpath_input, fpath_a, fpath_b), model_a_name, model_b_name),
outputs=[
fpath_input, input_image_display, fpath_a, image_a_display, fpath_b, image_b_display, model_a_name, model_b_name, notice_markdown
]
)
vote_tie.click(
fn=lambda: vote_for_model("tie", (fpath_input, fpath_a, fpath_b), model_a_name, model_b_name),
outputs=[
fpath_input, input_image_display, fpath_a, image_a_display, fpath_b, image_b_display, model_a_name, model_b_name, notice_markdown
]
)
def vote_for_model(choice, fpaths, model_a_name, model_b_name):
"""Submit a vote for a model and return updated images and model names."""
logging.info("Voting for model: %s", choice)
vote_data = {
"image_id": fpaths[0].value,
"model_a": model_a_name.value,
"model_b": model_b_name.value,
"winner": choice,
"fpath_a": fpaths[1].value,
"fpath_b": fpaths[2].value,
}
try:
logging.debug("Adding vote data to the database: %s", vote_data)
from db import add_vote
result = add_vote(vote_data)
logging.info("Vote successfully recorded in the database with ID: %s", result["id"])
except Exception as e:
logging.error("Error recording vote: %s", str(e))
(new_fpath_input, new_input_image, new_fpath_a, new_segmented_a,
new_fpath_b, new_segmented_b, new_a_name, new_b_name) = select_new_image()
model_a_name.value = new_a_name
model_b_name.value = new_b_name
fpath_input.value = new_fpath_input
fpath_a.value = new_fpath_a
fpath_b.value = new_fpath_b
mask_difference = compute_mask_difference(new_segmented_a, new_segmented_b)
# Update the notice markdown with the new vote count
new_notice_markdown = get_notice_markdown()
return (fpath_input.value, (new_input_image, [(mask_difference, "Mask")]), fpath_a.value, new_segmented_a,
fpath_b.value, new_segmented_b, model_a_name.value, model_b_name.value, new_notice_markdown)
with gr.Tab("🏆 Leaderboard", id=1) as leaderboard_tab:
rankings_table = gr.Dataframe(
headers=["Model", "Ranking"],
value=update_rankings_table(),
label="Current Model Rankings",
column_widths=[180, 60],
row_count=4
)
leaderboard_tab.select(
fn=lambda: update_rankings_table(),
outputs=rankings_table
)
with gr.Tab("📊 Vote Data", id=2) as vote_data_tab:
def update_vote_data():
votes = get_all_votes()
return [[vote.id, vote.image_id, vote.model_a, vote.model_b, vote.winner, vote.timestamp] for vote in votes]
vote_table = gr.Dataframe(
headers=["ID", "Image ID", "Model A", "Model B", "Winner", "Timestamp"],
value=update_vote_data(),
label="Vote Data",
column_widths=[20, 150, 100, 100, 100, 150],
row_count=0
)
vote_data_tab.select(
fn=lambda: update_vote_data(),
outputs=vote_table
)
return demo
def dump_database_to_json():
"""Dump the database to a JSON file and upload it to Hugging Face."""
votes = get_all_votes()
json_data = [
{
"id": vote.id,
"image_id": vote.image_id,
"model_a": vote.model_a,
"model_b": vote.model_b,
"winner": vote.winner,
"user_id": vote.user_id,
"fpath_a": vote.fpath_a,
"fpath_b": vote.fpath_b,
"timestamp": vote.timestamp.isoformat()
}
for vote in votes
]
json_file_path = JSON_DATASET_DIR / "votes.json"
# Upload to Hugging Face
with scheduler.lock:
with json_file_path.open("w") as f:
json.dump(json_data, f, indent=4)
logging.info("Database dumped to JSON")
def schedule_dump_database(interval=60):
"""Schedule the database dump to JSON every specified interval in seconds."""
def run():
while True:
logging.info("Starting database dump to JSON.")
dump_database_to_json()
logging.info("Database dump completed. Sleeping for %d seconds.", interval)
time.sleep(interval)
logging.info("Initializing database dump scheduler with interval: %d seconds.", interval)
thread = threading.Thread(target=run, daemon=True)
thread.start()
logging.info("Database dump scheduler started.")
if __name__ == "__main__":
schedule_dump_database() # Start the periodic database dump
demo = gradio_interface()
demo.launch() |