background-removal-arena-v0 / rating_systems.py
tdurbor's picture
Upload folder using huggingface_hub
c8d8760 verified
# This code is copied from the following source:
# https://github.com/lm-sys/FastChat/blob/main/fastchat/serve/monitor/rating_systems.py
import math
import pandas as pd
import numpy as np
from sqlalchemy.orm import Session
import pandas as pd
def get_matchups_models(df):
n_rows = len(df)
model_indices, models = pd.factorize(pd.concat([df["model_a"], df["model_b"]]))
matchups = np.column_stack([model_indices[:n_rows], model_indices[n_rows:]])
return matchups, models.to_list()
def preprocess_for_elo(df):
"""
in Elo we want numpy arrays for matchups and outcomes
matchups: int32 (N,2) contains model ids for the competitors in a match
outcomes: float64 (N,) contains 1.0, 0.5, or 0.0 representing win, tie, or loss for model_a
"""
matchups, models = get_matchups_models(df)
outcomes = np.full(len(df), 0.5)
outcomes[df["winner"] == "model_a"] = 1.0
outcomes[df["winner"] == "model_b"] = 0.0
return matchups, outcomes, models
def compute_elo(df, k=4.0, base=10.0, init_rating=1000.0, scale=400.0):
matchups, outcomes, models = preprocess_for_elo(df)
alpha = math.log(base) / scale
ratings = np.full(shape=(len(models),), fill_value=init_rating)
for (model_a_idx, model_b_idx), outcome in zip(matchups, outcomes):
prob = 1.0 / (
1.0 + math.exp(alpha * (ratings[model_b_idx] - ratings[model_a_idx]))
)
update = k * (outcome - prob)
ratings[model_a_idx] += update
ratings[model_b_idx] -= update
return {model: ratings[idx] for idx, model in enumerate(models)}
def compute_elo_from_votes(db: Session):
# Retrieve all votes from the database
votes = db.query(Vote).all()
# Convert votes to a DataFrame
data = {
"model_a": [vote.model_a for vote in votes],
"model_b": [vote.model_b for vote in votes],
"winner": [vote.winner for vote in votes]
}
df = pd.DataFrame(data)
# Compute Elo scores using the existing function
elo_scores = compute_elo(df)
return elo_scores