Spaces:
Running
on
Zero
Running
on
Zero
rockeycoss
commited on
Commit
·
1e50ca9
1
Parent(s):
0ab1c76
stable1
Browse files- README.md +1 -1
- app.py +39 -35
- requirements.txt +1 -1
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 🖼️🖌️
|
|
4 |
colorFrom: yellow
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
4 |
colorFrom: yellow
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.31.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
app.py
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
-
|
2 |
import json
|
3 |
import webcolors
|
4 |
import spaces
|
5 |
import gradio as gr
|
6 |
import os.path as osp
|
|
|
7 |
from PIL import Image, ImageDraw, ImageFont
|
8 |
|
9 |
import torch
|
@@ -64,6 +65,10 @@ font = ImageFont.truetype("assets/Arial.ttf", 20)
|
|
64 |
|
65 |
device = "cuda"
|
66 |
|
|
|
|
|
|
|
|
|
67 |
def import_model_class_from_model_name_or_path(
|
68 |
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder",
|
69 |
):
|
@@ -215,6 +220,18 @@ pipeline.scheduler = DPMSolverMultistepScheduler.from_pretrained(
|
|
215 |
|
216 |
prompt_format = PromptFormat()
|
217 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
def get_pixels(
|
219 |
box_sketch_template,
|
220 |
evt: gr.SelectData
|
@@ -318,8 +335,6 @@ def exe_undo(
|
|
318 |
return box_sketch_template
|
319 |
|
320 |
def process_box():
|
321 |
-
global stack
|
322 |
-
global state
|
323 |
|
324 |
visibilities = []
|
325 |
for _ in range(MAX_TEXT_BOX + 1):
|
@@ -330,31 +345,19 @@ def process_box():
|
|
330 |
# return [gr.update(visible=True), binary_matrixes, *visibilities, *colors]
|
331 |
return [gr.update(visible=True), *visibilities]
|
332 |
|
333 |
-
@
|
|
|
334 |
def generate_image(bg_prompt, bg_class, bg_tags, seed, *conditions):
|
335 |
-
print(conditions)
|
336 |
-
|
337 |
-
# 0 load model to cuda
|
338 |
-
global pipeline
|
339 |
-
if config.pretrained_vae_model_name_or_path is None:
|
340 |
-
vae.to(device, dtype=torch.float32)
|
341 |
-
else:
|
342 |
-
vae.to(device, dtype=inference_dtype)
|
343 |
-
text_encoder_one.to(device, dtype=inference_dtype)
|
344 |
-
text_encoder_two.to(device, dtype=inference_dtype)
|
345 |
-
byt5_model.to(device)
|
346 |
-
unet.to(device, dtype=inference_dtype)
|
347 |
-
pipeline = pipeline.to(device)
|
348 |
|
|
|
|
|
|
|
349 |
# 1. parse input
|
350 |
-
global state
|
351 |
-
global stack
|
352 |
-
|
353 |
prompts = []
|
354 |
colors = []
|
355 |
font_type = []
|
356 |
bboxes = []
|
357 |
-
num_boxes = len(
|
358 |
for i in range(num_boxes):
|
359 |
prompts.append(conditions[i])
|
360 |
colors.append(conditions[i + MAX_TEXT_BOX])
|
@@ -373,10 +376,10 @@ def generate_image(bg_prompt, bg_class, bg_tags, seed, *conditions):
|
|
373 |
raise gr.Error(f"Invalid style for text box {i + 1} !")
|
374 |
bboxes.append(
|
375 |
[
|
376 |
-
|
377 |
-
|
378 |
-
(
|
379 |
-
(
|
380 |
]
|
381 |
)
|
382 |
styles.append(
|
@@ -393,14 +396,11 @@ def generate_image(bg_prompt, bg_class, bg_tags, seed, *conditions):
|
|
393 |
bg_prompt += " Tags: " + bg_tags
|
394 |
text_prompt = prompt_format.format_prompt(prompts, styles)
|
395 |
|
396 |
-
print(bg_prompt)
|
397 |
-
print(text_prompt)
|
398 |
|
399 |
# 4. inference
|
400 |
-
|
401 |
-
generator = torch.Generator(device=device)
|
402 |
-
else:
|
403 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
404 |
with torch.cuda.amp.autocast():
|
405 |
image = pipeline(
|
406 |
prompt=bg_prompt,
|
@@ -411,6 +411,9 @@ def generate_image(bg_prompt, bg_class, bg_tags, seed, *conditions):
|
|
411 |
generator=generator,
|
412 |
text_attn_mask=None,
|
413 |
).images[0]
|
|
|
|
|
|
|
414 |
return image
|
415 |
|
416 |
def process_example(bg_prompt, bg_class, bg_tags, color_str, style_str, text_str, box_str, seed):
|
@@ -534,10 +537,10 @@ def main():
|
|
534 |
choices=font_idx_list,
|
535 |
))
|
536 |
|
537 |
-
seed_ = gr.Slider(label="Seed", minimum
|
538 |
-
button_generate = gr.Button("(2) I've finished my texts, colors and styles, generate!", elem_id="main_button", interactive=True)
|
539 |
|
540 |
-
button_layout.click(process_box, inputs=[], outputs=[post_box, *color_row]
|
541 |
|
542 |
with gr.Column():
|
543 |
output_image = gr.Image(label="Output Image", interactive=False)
|
@@ -570,7 +573,7 @@ def main():
|
|
570 |
'LilitaOne, Sensei-Medium, Sensei-Medium, LilitaOne, LilitaOne, LilitaOne',
|
571 |
"RSVP to +123-456-7890**********Olivia Wilson**********Baby Shower**********Please Join Us For a**********In Honoring**********23 November, 2021 | 03:00 PM Fauget Hotels",
|
572 |
'[0.07112462006079028, 0.6462006079027356, 0.3373860182370821, 0.026747720364741642]; [0.07051671732522796, 0.38662613981762917, 0.37264437689969604, 0.059574468085106386]; [0.07234042553191489, 0.15623100303951368, 0.6547112462006079, 0.12401215805471125]; [0.0662613981762918, 0.06747720364741641, 0.3981762917933131, 0.035866261398176294]; [0.07051671732522796, 0.31550151975683893, 0.22006079027355624, 0.03951367781155015]; [0.06990881458966565, 0.48328267477203646, 0.39878419452887537, 0.1094224924012158]',
|
573 |
-
|
574 |
],
|
575 |
[
|
576 |
'The image features a white background with a variety of colorful flowers and decorations. There are several pink flowers scattered throughout the scene, with some positioned closer to the top and others near the bottom. A blue flower can also be seen in the middle of the image. The overall composition creates a visually appealing and vibrant display.',
|
@@ -605,6 +608,7 @@ def main():
|
|
605 |
],
|
606 |
outputs=[post_box, box_sketch_template, seed_, *color_row, *colors, *styles, *prompts],
|
607 |
fn=process_example,
|
|
|
608 |
run_on_click=True,
|
609 |
label='Examples',
|
610 |
)
|
|
|
1 |
+
import gc
|
2 |
import json
|
3 |
import webcolors
|
4 |
import spaces
|
5 |
import gradio as gr
|
6 |
import os.path as osp
|
7 |
+
from copy import deepcopy
|
8 |
from PIL import Image, ImageDraw, ImageFont
|
9 |
|
10 |
import torch
|
|
|
65 |
|
66 |
device = "cuda"
|
67 |
|
68 |
+
def flush():
|
69 |
+
gc.collect()
|
70 |
+
torch.cuda.empty_cache()
|
71 |
+
|
72 |
def import_model_class_from_model_name_or_path(
|
73 |
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder",
|
74 |
):
|
|
|
220 |
|
221 |
prompt_format = PromptFormat()
|
222 |
|
223 |
+
# move to gpu
|
224 |
+
if config.pretrained_vae_model_name_or_path is None:
|
225 |
+
vae = vae.to(device, dtype=torch.float32)
|
226 |
+
else:
|
227 |
+
vae = vae.to(device, dtype=inference_dtype)
|
228 |
+
text_encoder_one = text_encoder_one.to(device, dtype=inference_dtype)
|
229 |
+
text_encoder_two = text_encoder_two.to(device, dtype=inference_dtype)
|
230 |
+
byt5_model = byt5_model.to(device)
|
231 |
+
unet = unet.to(device, dtype=inference_dtype)
|
232 |
+
pipeline = pipeline.to(device)
|
233 |
+
|
234 |
+
|
235 |
def get_pixels(
|
236 |
box_sketch_template,
|
237 |
evt: gr.SelectData
|
|
|
335 |
return box_sketch_template
|
336 |
|
337 |
def process_box():
|
|
|
|
|
338 |
|
339 |
visibilities = []
|
340 |
for _ in range(MAX_TEXT_BOX + 1):
|
|
|
345 |
# return [gr.update(visible=True), binary_matrixes, *visibilities, *colors]
|
346 |
return [gr.update(visible=True), *visibilities]
|
347 |
|
348 |
+
@torch.inference_mode()
|
349 |
+
@spaces.GPU(enable_queue=True)
|
350 |
def generate_image(bg_prompt, bg_class, bg_tags, seed, *conditions):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
351 |
|
352 |
+
stack_cp = deepcopy(stack)
|
353 |
+
print(f"conditions: {conditions}")
|
354 |
+
|
355 |
# 1. parse input
|
|
|
|
|
|
|
356 |
prompts = []
|
357 |
colors = []
|
358 |
font_type = []
|
359 |
bboxes = []
|
360 |
+
num_boxes = len(stack_cp) if len(stack_cp[-1]) == 4 else len(stack_cp) - 1
|
361 |
for i in range(num_boxes):
|
362 |
prompts.append(conditions[i])
|
363 |
colors.append(conditions[i + MAX_TEXT_BOX])
|
|
|
376 |
raise gr.Error(f"Invalid style for text box {i + 1} !")
|
377 |
bboxes.append(
|
378 |
[
|
379 |
+
stack_cp[i][0] / 1024,
|
380 |
+
stack_cp[i][1] / 1024,
|
381 |
+
(stack_cp[i][2] - stack_cp[i][0]) / 1024,
|
382 |
+
(stack_cp[i][3] - stack_cp[i][1]) / 1024,
|
383 |
]
|
384 |
)
|
385 |
styles.append(
|
|
|
396 |
bg_prompt += " Tags: " + bg_tags
|
397 |
text_prompt = prompt_format.format_prompt(prompts, styles)
|
398 |
|
399 |
+
print(f"bg_prompt: {bg_prompt}")
|
400 |
+
print(f"text_prompt: {text_prompt}")
|
401 |
|
402 |
# 4. inference
|
403 |
+
generator = torch.Generator(device=device).manual_seed(int(seed))
|
|
|
|
|
|
|
404 |
with torch.cuda.amp.autocast():
|
405 |
image = pipeline(
|
406 |
prompt=bg_prompt,
|
|
|
411 |
generator=generator,
|
412 |
text_attn_mask=None,
|
413 |
).images[0]
|
414 |
+
|
415 |
+
flush()
|
416 |
+
|
417 |
return image
|
418 |
|
419 |
def process_example(bg_prompt, bg_class, bg_tags, color_str, style_str, text_str, box_str, seed):
|
|
|
537 |
choices=font_idx_list,
|
538 |
))
|
539 |
|
540 |
+
seed_ = gr.Slider(label="Seed", minimum=0, maximum=2147483647, value=42, step=1)
|
541 |
+
button_generate = gr.Button("(2) I've finished my texts, colors and styles, generate!", elem_id="main_button", interactive=True, variant='primary')
|
542 |
|
543 |
+
button_layout.click(process_box, inputs=[], outputs=[post_box, *color_row])
|
544 |
|
545 |
with gr.Column():
|
546 |
output_image = gr.Image(label="Output Image", interactive=False)
|
|
|
573 |
'LilitaOne, Sensei-Medium, Sensei-Medium, LilitaOne, LilitaOne, LilitaOne',
|
574 |
"RSVP to +123-456-7890**********Olivia Wilson**********Baby Shower**********Please Join Us For a**********In Honoring**********23 November, 2021 | 03:00 PM Fauget Hotels",
|
575 |
'[0.07112462006079028, 0.6462006079027356, 0.3373860182370821, 0.026747720364741642]; [0.07051671732522796, 0.38662613981762917, 0.37264437689969604, 0.059574468085106386]; [0.07234042553191489, 0.15623100303951368, 0.6547112462006079, 0.12401215805471125]; [0.0662613981762918, 0.06747720364741641, 0.3981762917933131, 0.035866261398176294]; [0.07051671732522796, 0.31550151975683893, 0.22006079027355624, 0.03951367781155015]; [0.06990881458966565, 0.48328267477203646, 0.39878419452887537, 0.1094224924012158]',
|
576 |
+
1,
|
577 |
],
|
578 |
[
|
579 |
'The image features a white background with a variety of colorful flowers and decorations. There are several pink flowers scattered throughout the scene, with some positioned closer to the top and others near the bottom. A blue flower can also be seen in the middle of the image. The overall composition creates a visually appealing and vibrant display.',
|
|
|
608 |
],
|
609 |
outputs=[post_box, box_sketch_template, seed_, *color_row, *colors, *styles, *prompts],
|
610 |
fn=process_example,
|
611 |
+
cache_examples=False,
|
612 |
run_on_click=True,
|
613 |
label='Examples',
|
614 |
)
|
requirements.txt
CHANGED
@@ -7,4 +7,4 @@ torchvision==0.17.0
|
|
7 |
deepspeed
|
8 |
peft
|
9 |
webcolors
|
10 |
-
gradio
|
|
|
7 |
deepspeed
|
8 |
peft
|
9 |
webcolors
|
10 |
+
gradio==4.31.1
|