CNN_MLP / app.py
bgaspra's picture
Update app.py
3690a76 verified
raw
history blame
15.6 kB
import gradio as gr
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torchvision import models
from transformers import BertTokenizer, BertModel
import pandas as pd
from datasets import load_dataset
from torch.utils.data import DataLoader, Dataset, random_split
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
from tqdm import tqdm
import os
import logging
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('model_training.log'),
logging.StreamHandler()
]
)
# Create output directory for results
os.makedirs('output', exist_ok=True)
# Load dataset and filter out null/none values
logging.info("Loading and filtering dataset...")
dataset = load_dataset('thefcraft/civitai-stable-diffusion-337k', split='train[:10000]')
dataset = dataset.filter(lambda example: example['Model'] is not None and example['Model'].strip() != '')
if len(dataset) == 0:
raise ValueError("Dataset is empty after filtering!")
logging.info(f"Dataset size after filtering: {len(dataset)}")
# Preprocess text data
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
class CustomDataset(Dataset):
def __init__(self, dataset):
self.dataset = dataset
self.transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
self.label_encoder = LabelEncoder()
self.labels = self.label_encoder.fit_transform(dataset['Model'])
self.unique_models = self.label_encoder.classes_
logging.info(f"Number of unique models: {len(self.unique_models)}")
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
try:
image = self.transform(self.dataset[idx]['image'])
text = tokenizer(
self.dataset[idx]['prompt'],
padding='max_length',
truncation=True,
max_length=512,
return_tensors='pt'
)
label = self.labels[idx]
return image, text, label
except Exception as e:
logging.error(f"Error processing item {idx}: {str(e)}")
raise
class ImageModel(nn.Module):
def __init__(self):
super(ImageModel, self).__init__()
self.model = models.resnet18(pretrained=True)
self.model.fc = nn.Linear(self.model.fc.in_features, 512)
def forward(self, x):
x = self.model(x)
return nn.functional.relu(x)
class TextModel(nn.Module):
def __init__(self):
super(TextModel, self).__init__()
self.bert = BertModel.from_pretrained('bert-base-uncased')
self.fc = nn.Linear(768, 512)
def forward(self, x):
outputs = self.bert(**x)
x = outputs.pooler_output
x = self.fc(x)
return nn.functional.relu(x)
class CombinedModel(nn.Module):
def __init__(self, num_classes):
super(CombinedModel, self).__init__()
self.image_model = ImageModel()
self.text_model = TextModel()
self.dropout = nn.Dropout(0.2)
self.fc = nn.Linear(1024, num_classes)
def forward(self, image, text):
image_features = self.image_model(image)
text_features = self.text_model(text)
combined = torch.cat((image_features, text_features), dim=1)
combined = self.dropout(combined)
return self.fc(combined)
class ModelTrainerEvaluator:
def __init__(self, model, dataset, batch_size=32, learning_rate=0.001):
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logging.info(f"Using device: {self.device}")
self.model = model.to(self.device)
self.batch_size = batch_size
self.criterion = nn.CrossEntropyLoss()
self.optimizer = torch.optim.AdamW(
model.parameters(),
lr=learning_rate,
weight_decay=0.01
)
self.scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
self.optimizer,
mode='min',
factor=0.1,
patience=2,
verbose=True
)
# Split dataset
total_size = len(dataset)
train_size = int(0.7 * total_size)
val_size = int(0.15 * total_size)
test_size = total_size - train_size - val_size
train_dataset, val_dataset, test_dataset = random_split(
dataset, [train_size, val_size, test_size]
)
self.train_loader = DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=4
)
self.val_loader = DataLoader(
val_dataset,
batch_size=batch_size,
num_workers=4
)
self.test_loader = DataLoader(
test_dataset,
batch_size=batch_size,
num_workers=4
)
self.unique_models = dataset.unique_models
def train_epoch(self):
self.model.train()
total_loss = 0
predictions = []
actual_labels = []
progress_bar = tqdm(self.train_loader, desc="Training")
for batch_idx, batch in enumerate(progress_bar):
try:
images, texts, labels = batch
images = images.to(self.device)
labels = labels.to(self.device)
# Move text tensors to device
texts = {k: v.squeeze(1).to(self.device) for k, v in texts.items()}
self.optimizer.zero_grad()
outputs = self.model(images, texts)
loss = self.criterion(outputs, labels)
loss.backward()
# Gradient clipping
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0)
self.optimizer.step()
total_loss += loss.item()
_, preds = torch.max(outputs, 1)
predictions.extend(preds.cpu().numpy())
actual_labels.extend(labels.cpu().numpy())
# Update progress bar
progress_bar.set_postfix({
'loss': f'{loss.item():.4f}',
'avg_loss': f'{total_loss/(batch_idx+1):.4f}'
})
except Exception as e:
logging.error(f"Error in batch {batch_idx}: {str(e)}")
continue
return total_loss / len(self.train_loader), predictions, actual_labels
def evaluate(self, loader, mode="Validation"):
self.model.eval()
total_loss = 0
predictions = []
actual_labels = []
with torch.no_grad():
progress_bar = tqdm(loader, desc=mode)
for batch_idx, batch in enumerate(progress_bar):
try:
images, texts, labels = batch
images = images.to(self.device)
labels = labels.to(self.device)
texts = {k: v.squeeze(1).to(self.device) for k, v in texts.items()}
outputs = self.model(images, texts)
loss = self.criterion(outputs, labels)
total_loss += loss.item()
_, preds = torch.max(outputs, 1)
predictions.extend(preds.cpu().numpy())
actual_labels.extend(labels.cpu().numpy())
progress_bar.set_postfix({
'loss': f'{loss.item():.4f}',
'avg_loss': f'{total_loss/(batch_idx+1):.4f}'
})
except Exception as e:
logging.error(f"Error in {mode} batch {batch_idx}: {str(e)}")
continue
return total_loss / len(loader), predictions, actual_labels
def plot_confusion_matrix(self, y_true, y_pred, title):
cm = confusion_matrix(y_true, y_pred)
plt.figure(figsize=(15, 15))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.title(title)
plt.ylabel('True Label')
plt.xlabel('Predicted Label')
# Save plot
filename = f'output/{title.lower().replace(" ", "_")}.png'
plt.savefig(filename)
plt.close()
logging.info(f"Saved confusion matrix to {filename}")
def generate_evaluation_report(self, y_true, y_pred, title):
report = classification_report(
y_true,
y_pred,
target_names=self.unique_models,
output_dict=True
)
df_report = pd.DataFrame(report).transpose()
# Save report
filename = f'output/{title.lower().replace(" ", "_")}_report.csv'
df_report.to_csv(filename)
logging.info(f"Saved classification report to {filename}")
accuracy = accuracy_score(y_true, y_pred)
logging.info(f"\n{title} Results:")
logging.info(f"Accuracy: {accuracy:.4f}")
logging.info("\nClassification Report:")
logging.info("\n" + classification_report(y_true, y_pred, target_names=self.unique_models))
return accuracy, df_report
def train_and_evaluate(self, num_epochs=5):
best_val_loss = float('inf')
train_accuracies = []
val_accuracies = []
train_losses = []
val_losses = []
logging.info(f"Starting training for {num_epochs} epochs...")
for epoch in range(num_epochs):
logging.info(f"\nEpoch {epoch+1}/{num_epochs}")
# Training
train_loss, train_preds, train_labels = self.train_epoch()
train_accuracy, _ = self.generate_evaluation_report(
train_labels,
train_preds,
f"Training_Epoch_{epoch+1}"
)
self.plot_confusion_matrix(
train_labels,
train_preds,
f"Training_Confusion_Matrix_Epoch_{epoch+1}"
)
# Validation
val_loss, val_preds, val_labels = self.evaluate(self.val_loader)
val_accuracy, _ = self.generate_evaluation_report(
val_labels,
val_preds,
f"Validation_Epoch_{epoch+1}"
)
self.plot_confusion_matrix(
val_labels,
val_preds,
f"Validation_Confusion_Matrix_Epoch_{epoch+1}"
)
# Update learning rate scheduler
self.scheduler.step(val_loss)
train_accuracies.append(train_accuracy)
val_accuracies.append(val_accuracy)
train_losses.append(train_loss)
val_losses.append(val_loss)
logging.info(f"\nTraining Loss: {train_loss:.4f}")
logging.info(f"Validation Loss: {val_loss:.4f}")
# Save best model
if val_loss < best_val_loss:
best_val_loss = val_loss
torch.save({
'epoch': epoch,
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'val_loss': val_loss,
}, 'output/best_model.pth')
logging.info(f"Saved new best model with validation loss: {val_loss:.4f}")
# Plot training history
plt.figure(figsize=(12, 4))
# Plot accuracies
plt.subplot(1, 2, 1)
plt.plot(train_accuracies, label='Training Accuracy')
plt.plot(val_accuracies, label='Validation Accuracy')
plt.title('Model Accuracy over Epochs')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
# Plot losses
plt.subplot(1, 2, 2)
plt.plot(train_losses, label='Training Loss')
plt.plot(val_losses, label='Validation Loss')
plt.title('Model Loss over Epochs')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.tight_layout()
plt.savefig('output/training_history.png')
plt.close()
# Final test evaluation using best model
logging.info("\nPerforming final evaluation on test set...")
checkpoint = torch.load('output/best_model.pth')
self.model.load_state_dict(checkpoint['model_state_dict'])
test_loss, test_preds, test_labels = self.evaluate(self.test_loader, "Test")
self.generate_evaluation_report(test_labels, test_preds, "Final_Test")
self.plot_confusion_matrix(test_labels, test_preds, "Final_Test_Confusion_Matrix")
def predict(image):
model.eval()
with torch.no_grad():
image = transforms.ToTensor()(image).unsqueeze(0)
image = transforms.Resize((224, 224))(image)
text_input = tokenizer(
"Sample prompt",
return_tensors='pt',
padding=True,
truncation=True
)
output = model(image, text_input)
_, indices = torch.topk(output, 5)
recommended_models = [dataset['Model'][i] for i in indices[0]]
return recommended_models
def main():
try:
# Create dataset
logging.info("Creating custom dataset...")
custom_dataset = CustomDataset(dataset)
# Create model
logging.info("Initializing model...")
model = CombinedModel(num_classes=len(custom_dataset.unique_models))
# Create trainer/evaluator
logging.info("Setting up trainer/evaluator...")
trainer = ModelTrainerEvaluator(
model=model,
dataset=custom_dataset,
batch_size=32,
learning_rate=0.001
)
# Train and evaluate
logging.info("Starting training process...")
trainer.train_and_evaluate(num_epochs=5)
# Create Gradio interface
logging.info("Setting up Gradio interface...")
interface = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"),
outputs=gr.Textbox(label="Recommended Models"),
title="AI Image Model Recommender",
description="Upload an AI-generated image to receive model recommendations.",
examples=[
["example_image1.jpg"],
["example_image2.jpg"]
],
analytics_enabled=False
)
# Launch the interface
logging.info("Launching Gradio interface...")
interface.launch(share=True)
except Exception as e:
logging.error(f"Error in main function: {str(e)}")
raise
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
logging.info("Process interrupted by user")
except Exception as e:
logging.error(f"Fatal error: {str(e)}")
raise