Spaces:
Sleeping
Sleeping
File size: 1,810 Bytes
460fdc7 42e8f64 8805c59 f7b4006 7786ff5 7022131 f7b4006 7022131 7786ff5 7022131 7786ff5 f7b4006 7022131 f7b4006 7786ff5 7022131 f7b4006 7786ff5 7022131 f7b4006 42e8f64 7022131 f7b4006 7786ff5 7022131 f7b4006 7786ff5 f7b4006 7022131 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import gradio as gr
import pandas as pd
from huggingface_hub import list_models
import plotly.express as px
def get_plots(task_df):
task_df['total_gpu_energy (Wh)'] = task_df['total_gpu_energy']*1000
task_df['energy_star'] = pd.cut(task_df['total_gpu_energy (Wh)'], 3, labels=["⭐⭐⭐", "⭐⭐", "⭐"])
task_df = px.scatter(task_df, x="model", y="total_gpu_energy (Wh)", height= 500, width= 800, color = 'energy_star', color_discrete_map={"⭐": 'red', "⭐⭐": "yellow", "⭐⭐⭐": "green"})
return task_df
# %% app.ipynb 3
demo = gr.Blocks()
with demo:
gr.Markdown(
"""# Energy Star Leaderboard
TODO """
)
with gr.Tabs():
with gr.TabItem("Text Generation 💬"):
with gr.Row():
animal_data = gr.components.Dataframe(
type="pandas", datatype=["number", "markdown", "markdown", "number"]
)
with gr.TabItem("Image Generation 📷"):
with gr.Row():
science_data = gr.components.Dataframe(
type="pandas", datatype=["number", "markdown", "markdown", "number"]
)
with gr.TabItem("Text Classification 🎭"):
with gr.Row():
plot = gr.Plot(get_plots('data/text_classification.csv'))
with gr.TabItem("Image Classification 🖼️"):
with gr.Row():
landscape_data = gr.components.Dataframe(
type="pandas", datatype=["number", "markdown", "markdown", "number"]
)
with gr.TabItem("Extractive QA ❔"):
with gr.Row():
wildcard_data = gr.components.Dataframe(
type="pandas", datatype=["number", "markdown", "markdown", "number"]
)
demo.launch()
|