NerRoB-czech / extended_embeddings /extended_embedding_token_classification.py
AlzbetaStrompova
minor changes
75a65be
from typing import Optional, Tuple, Union
import torch
from torch import nn
from transformers.modeling_outputs import TokenClassifierOutput
from transformers.models.roberta.modeling_roberta import RobertaForTokenClassification
from transformers.models.roberta.modeling_roberta import ROBERTA_INPUTS_DOCSTRING, add_start_docstrings_to_model_forward, add_code_sample_docstrings
from extended_embeddings.extended_embeddings_model import ExtendedEmbeddigsRobertaModel
_CONFIG_FOR_DOC = "RobertaConfig"
class ExtendedEmbeddigsRobertaForTokenClassification(RobertaForTokenClassification):
"""
A RobertaForTokenClassification for token classification tasks with extended embeddings.
This RobertaForTokenClassification extends the functionality of the `RobertaForTokenClassification` class
by adding support for additional features such as `per`, `org`, and `loc`.
Part of the code copied from: transformers.models.bert.modeling_roberta.RobertaForTokenClassification
"""
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.roberta = ExtendedEmbeddigsRobertaModel(config)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size + 3, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="Jean-Baptiste/roberta-large-ner-english",
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output="['O', 'ORG', 'ORG', 'O', 'O', 'O', 'O', 'O', 'LOC', 'O', 'LOC', 'LOC']",
expected_loss=0.01,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
per: Optional[torch.Tensor] = None,
org: Optional[torch.Tensor] = None,
loc: Optional[torch.Tensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
per=per,
org=org,
loc=loc,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)