Spaces:
Sleeping
Sleeping
from typing import Optional, Tuple, Union | |
import torch | |
from torch import nn | |
from transformers.modeling_outputs import TokenClassifierOutput | |
from transformers.models.roberta.modeling_roberta import RobertaForTokenClassification | |
from transformers.models.roberta.modeling_roberta import ROBERTA_INPUTS_DOCSTRING, add_start_docstrings_to_model_forward, add_code_sample_docstrings | |
from extended_embeddings.extended_embeddings_model import ExtendedEmbeddigsRobertaModel | |
_CONFIG_FOR_DOC = "RobertaConfig" | |
class ExtendedEmbeddigsRobertaForTokenClassification(RobertaForTokenClassification): | |
""" | |
A RobertaForTokenClassification for token classification tasks with extended embeddings. | |
This RobertaForTokenClassification extends the functionality of the `RobertaForTokenClassification` class | |
by adding support for additional features such as `per`, `org`, and `loc`. | |
Part of the code copied from: transformers.models.bert.modeling_roberta.RobertaForTokenClassification | |
""" | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.roberta = ExtendedEmbeddigsRobertaModel(config) | |
classifier_dropout = ( | |
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob | |
) | |
self.dropout = nn.Dropout(classifier_dropout) | |
self.classifier = nn.Linear(config.hidden_size + 3, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
per: Optional[torch.Tensor] = None, | |
org: Optional[torch.Tensor] = None, | |
loc: Optional[torch.Tensor] = None, | |
head_mask: Optional[torch.FloatTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.roberta( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
per=per, | |
org=org, | |
loc=loc, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
sequence_output = outputs[0] | |
sequence_output = self.dropout(sequence_output) | |
logits = self.classifier(sequence_output) | |
loss = None | |
if labels is not None: | |
# move labels to correct device to enable model parallelism | |
labels = labels.to(logits.device) | |
loss_fct = nn.CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[2:] | |
return ((loss,) + output) if loss is not None else output | |
return TokenClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |