File size: 4,038 Bytes
7e6964a
 
 
 
75a65be
7e6964a
 
 
 
 
2e3bc39
7e6964a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75a65be
7e6964a
 
2e3bc39
 
 
 
 
 
 
7e6964a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e3bc39
7e6964a
 
 
 
 
2e3bc39
7e6964a
 
 
 
2e3bc39
7e6964a
 
 
 
 
 
 
 
2e3bc39
7e6964a
 
2e3bc39
7e6964a
 
 
 
 
 
 
 
 
 
2e3bc39
7e6964a
 
 
2e3bc39
 
 
 
 
7e6964a
 
 
 
2e3bc39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e6964a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "c0d9dc18aadb485086f5153f9b137368",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from huggingface_hub import notebook_login\n",
    "\n",
    "notebook_login()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "final_model\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/betty/miniconda3/envs/DP/lib/python3.10/site-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.\n",
      "  warnings.warn(\n"
     ]
    }
   ],
   "source": [
    "from website_script import load\n",
    "tokenizer, model, gazetteers_for_matching = load()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "9e98fea6c2e440f29afb00c0ed5fedff",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "pytorch_model.bin:   0%|          | 0.00/502M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "CommitInfo(commit_url='https://huggingface.co/bettystr/NerRoB-czech/commit/0e6b09c5455288a3305b32e39626d89f7b3937dc', commit_message='Upload ExtendedEmbeddigsRobertaForTokenClassification', commit_description='', oid='0e6b09c5455288a3305b32e39626d89f7b3937dc', pr_url=None, pr_revision=None, pr_num=None)"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "model.push_to_hub(\"bettystr/NerRoB-czech\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Data from gazetteers.json has been loaded and saved as a pickle file at gazetteers.pkl.\n"
     ]
    }
   ],
   "source": [
    "import json\n",
    "import pickle\n",
    "def load_json_as_pickle(json_path, pickle_path):\n",
    "    \"\"\"\n",
    "    Load data from a JSON file and save it as a pickle file.\n",
    "\n",
    "    Parameters:\n",
    "        json_path (str): Path to the JSON file.\n",
    "        pickle_path (str): Path where the pickle file will be saved.\n",
    "    \"\"\"\n",
    "    # Load data from the JSON file\n",
    "    with open(json_path, 'r') as file:\n",
    "        data = json.load(file)\n",
    "    \n",
    "    # Save data to a pickle file\n",
    "    with open(pickle_path, 'wb') as file:\n",
    "        pickle.dump(data, file)\n",
    "\n",
    "    print(f\"Data from {json_path} has been loaded and saved as a pickle file at {pickle_path}.\")\n",
    "\n",
    "# Example usage\n",
    "json_path = 'gazetteers.json'\n",
    "pickle_path = 'gazetteers.pkl'\n",
    "load_json_as_pickle(json_path, pickle_path)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "DP",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.14"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}