Spaces:
Sleeping
Sleeping
File size: 16,693 Bytes
7e6964a 75a65be 7e6964a 75a65be 7e6964a 75a65be 7e6964a 75a65be 7e6964a 75a65be 7e6964a 75a65be 7e6964a 75a65be 7e6964a 75a65be 7e6964a 75a65be 7e6964a 75a65be 7e6964a 75a65be 7e6964a 75a65be 7e6964a 75a65be 7e6964a 75a65be 7e6964a 75a65be 7e6964a 75a65be 7e6964a 75a65be 7e6964a 75a65be 7e6964a 75a65be 7e6964a 75a65be 7e6964a 75a65be 7e6964a 75a65be 7e6964a 75a65be 7e6964a 75a65be 7e6964a 75a65be 7e6964a 75a65be 7e6964a 75a65be 7e6964a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
import os
import re
from tqdm import tqdm
from datasets import Dataset, DatasetDict
from data_manipulation.creation_gazetteers import build_reverse_dictionary, lemmatizing, load_json
####################################################################################################
### GAZETTEERS EMBEDDINGS ##########################################################################
####################################################################################################
def find_multi_token_matches(tokens, looking_tokens, gazetteers, matches):
i = 0
n = len(tokens)
assert n == len(looking_tokens)
while i < n:
for length in range(min(5, n-i), 0, -1): # Assuming maximum entity length is 5
phrase = ' '.join(looking_tokens[i:i+length])
for gazetteer in gazetteers:
if phrase in gazetteer:
match_type = gazetteer[phrase]
for index in range(i, i+length):
matches.setdefault(tokens[index], []).append((phrase, match_type))
i += 1
return matches
def find_single_token_matches(tokens, looking_tokens, gazetteers, matches):
n = len(tokens)
assert n == len(looking_tokens)
for index in range(n):
word = looking_tokens[index]
if len(word) < 3:
continue
for gazetteer in gazetteers:
if word in gazetteer:
match_type = gazetteer[word]
matches.setdefault(tokens[index], []).append((word, match_type))
return matches
def gazetteer_matching(words, gazetteers_for_matching, args=None):
ending_ova = True
method_for_gazetteers_matching = "single"
apply_lemmatizing = True
if method_for_gazetteers_matching == "single":
matches = find_single_token_matches(words, words, gazetteers_for_matching, {})
if apply_lemmatizing:
lemmatize_tokens = [lemmatizing(t) for t in words]
matches = find_single_token_matches(words, lemmatize_tokens, gazetteers_for_matching, matches)
else: # multi_token_match
matches = find_multi_token_matches(words, words, gazetteers_for_matching, {})
if apply_lemmatizing:
lemmatize_tokens = [lemmatizing(t) for t in words]
matches = find_multi_token_matches(words, lemmatize_tokens, gazetteers_for_matching, matches)
result = []
for word in words:
mid_res = sorted(matches.get(word, []), key=lambda x: x[0].count(" "), reverse=True)
per, org, loc = 0, 0, 0
for res in mid_res:
if mid_res[0][0].count(" ") == res[0].count(" "):
if res[1] == "PER":
per = 5
elif res[1] == "ORG":
org = 5
elif res[1] == "LOC":
loc = 5
if ending_ova and word.endswith("ová") and word[0].isupper():
per = 5
result.append([per, org, loc])
return result
####################################################################################################
### CNEC DATASET ###################################################################################
####################################################################################################
def get_dataset_from_cnec(label_mapper:dict, xml_file_path, args):
"""
label_mapper: cnec labels to int
"""
# Open and read the XML file as plain text
id_ = 0
with open(xml_file_path, "r", encoding="utf-8") as xml_file:
plain_text = xml_file.read()
plain_text = plain_text[5:-5] # remove unnessery characters
plain_text = re.sub(r'([a-zA-Z.])<ne', r'\1 <ne', plain_text)
plain_text = re.sub(r'</ne>([a-zA-Z.])', r'</ne> \1', plain_text)
plain_text = re.sub(r'[ ]+', ' ', plain_text)
sentences = plain_text.split("\n")
ne_pattern = r'<ne type="([a-zA-Z?_-]{1,5})">([^<]+)</ne>'
data = []
if args.apply_extended_embeddings:
gazetteers_for_matching = load_json(args.extended_embeddings_gazetteers_path)
temp = []
for i in gazetteers_for_matching.keys():
temp.append(build_reverse_dictionary({i: gazetteers_for_matching[i]}))
gazetteers_for_matching = temp
for sentence in tqdm(sentences):
entity_mapping = []
while "<ne type=" in sentence: # while because there are nested entities
nes = re.findall(ne_pattern, sentence)
for label, entity in nes:
pattern = f'<ne type="{label}">{entity}</ne>'
index = sentence.index(pattern)
temp_index = index
sentence = sentence.replace(pattern, entity, 1)
temp_index -= sum([len(f'<ne type="{tag}">') for tag in re.findall(r'<ne type="([a-zA-Z?_-]{1,5})">', sentence[:index])])
temp_index -= sentence[:index].count("</ne>") * len("</ne>")
temp_index -= (re.sub(r'<ne type="([a-zA-Z?_-]{1,5})">', "", sentence[:index]).replace("</ne>", "")).count(" ")
index = temp_index
entity_mapping.append((entity, label, index, index + len(entity)))
entities = []
for entity, label, start, end in entity_mapping:
for tag in label_mapper.keys():
if label.lower().startswith(tag):
entities.append((label_mapper[tag], entity, start, end))
break
entities.sort(key=lambda x: len(x[1]), reverse=True)
words = re.split(r'\s+', sentence)
tags_per_word = []
sentence_counter = -1
for word in words:
sentence_counter += len(word) + 1
if len(entities) == 0:
tags_per_word.append(0) # tag representing no label for no word
for index_entity in range(len(entities)):
if not(sentence_counter - len(word) >= entities[index_entity][2] and
sentence_counter <= entities[index_entity][3] and
word in entities[index_entity][1]):
if index_entity == len(entities) - 1:
tags_per_word.append(0) # tag representing no label for word
continue
if args.division_to_BI_tags:
if sentence_counter - len(word) == entities[index_entity][2]:
tags_per_word.append(entities[index_entity][0] * 2 - 1) # beggining of entity
else:
tags_per_word.append(entities[index_entity][0] * 2) # inside of entity
else:
tags_per_word.append(entities[index_entity][0])
break
if args.contain_only_label_sentences and tags_per_word.count(0) == len(tags_per_word):
continue
if tags_per_word == [] or tags_per_word == [0]:
continue
if args.apply_extended_embeddings:
matching = gazetteer_matching(words, gazetteers_for_matching, args)
data.append({"id": id_, 'tokens': words, 'ner_tags': tags_per_word,
"sentence": " ".join(words), "gazetteers": matching})
else:
data.append({"id": id_, 'tokens': words, 'ner_tags': tags_per_word, "sentence": " ".join(words)})
id_ += 1
return data
def get_default_dataset_from_cnec(label_mapper:dict, xml_file_path):
"""
label_mapper: cnec labels to int
"""
# Open and read the XML file as plain text
id_ = 0
with open(xml_file_path, "r", encoding="utf-8") as xml_file:
plain_text = xml_file.read()
plain_text = plain_text[5:-5] # remove unnessery characters
plain_text = re.sub(r'([a-zA-Z.])<ne', r'\1 <ne', plain_text)
plain_text = re.sub(r'</ne>([a-zA-Z.])', r'</ne> \1', plain_text)
plain_text = re.sub(r'[ ]+', ' ', plain_text)
sentences = plain_text.split("\n")
ne_pattern = r'<ne type="([a-zA-Z?_-]{1,5})">([^<]+)</ne>'
data = []
for sentence in tqdm(sentences):
entity_mapping = []
while "<ne type=" in sentence: # while because there are nested entities
nes = re.findall(ne_pattern, sentence)
for label, entity in nes:
pattern = f'<ne type="{label}">{entity}</ne>'
index = sentence.index(pattern)
temp_index = index
sentence = sentence.replace(pattern, entity, 1)
temp_index -= sum([len(f'<ne type="{tag}">') for tag in re.findall(r'<ne type="([a-zA-Z?_-]{1,5})">', sentence[:index])])
temp_index -= sentence[:index].count("</ne>") * len("</ne>")
temp_index -= (re.sub(r'<ne type="([a-zA-Z?_-]{1,5})">', "", sentence[:index]).replace("</ne>", "")).count(" ")
index = temp_index
entity_mapping.append((entity, label, index, index + len(entity)))
entities = []
for entity, label, start, end in entity_mapping:
for tag in label_mapper.keys():
if label.lower().startswith(tag):
entities.append((label_mapper[tag], entity, start, end))
break
entities.sort(key=lambda x: len(x[1]), reverse=True)
words = re.split(r'\s+', sentence)
tags_per_word = []
sentence_counter = -1
for word in words:
sentence_counter += len(word) + 1
if len(entities) == 0:
tags_per_word.append(0) # tag representing no label for no word
for index_entity in range(len(entities)):
if not(sentence_counter - len(word) >= entities[index_entity][2] and
sentence_counter <= entities[index_entity][3] and
word in entities[index_entity][1]):
if index_entity == len(entities) - 1:
tags_per_word.append(0) # tag representing no label for word
continue
if sentence_counter - len(word) == entities[index_entity][2]:
tags_per_word.append(entities[index_entity][0] * 2 - 1) # beggining of entity
else:
tags_per_word.append(entities[index_entity][0] * 2) # inside of entity
if tags_per_word == [] or tags_per_word == [0]:
continue
data.append({"id": id_, 'tokens': words, 'ner_tags': tags_per_word, "sentence": " ".join(words)})
id_ += 1
return data
def create_cnec_dataset(label_mapper:dict, args):
dataset = DatasetDict()
for part, file_name in zip(["train", "validation", "test"],["named_ent_train.xml", "named_ent_etest.xml", "named_ent_dtest.xml"]):
file_path = os.path.join(args.cnec_dataset_dir_path, file_name)
temp_dataset = get_dataset_from_cnec(label_mapper, file_path, args)
dataset[part] = Dataset.from_list(temp_dataset)
return dataset
####################################################################################################
### WIKIANN DATASET ################################################################################
####################################################################################################
def load_wikiann_testing_dataset(args):
if args.apply_extended_embeddings:
gazetteers_for_matching = load_json(args.extended_embeddings_gazetteers_path)
temp = []
for i in gazetteers_for_matching.keys():
temp.append(build_reverse_dictionary({i: gazetteers_for_matching[i]}))
gazetteers_for_matching = temp
dataset = []
index = 0
sentences = load_tagged_sentences(args.wikiann_dataset_path)
for sentence in sentences:
words = [word for word, _ in sentence]
tags = [tag for _, tag in sentence]
if args.apply_extended_embeddings:
matching = gazetteer_matching(words, gazetteers_for_matching, args)
dataset.append({"id": index, 'tokens': words, 'ner_tags': tags, "gazetteers": matching})
else:
dataset.append({"id": index, 'tokens': words, 'ner_tags': tags})
index += 1
test = Dataset.from_list(dataset)
dataset = DatasetDict({"train": Dataset.from_list([{"id": 1, 'tokens': [], 'ner_tags': [], "gazetteers": []}]),
"validation": Dataset.from_list([{"id": 1, 'tokens': [], 'ner_tags': [], "gazetteers": []}]),
"test": test})
# dataset = DatasetDict({"test": test})
return dataset
def load_tagged_sentences(file_path):
sentences = [] # List to hold all sentences
current_sentence = [] # List to hold current sentence tokens and tags
with open(file_path, 'r', encoding='utf-8') as file:
for line in file:
line = line.strip() # Remove any extra whitespace from the line
if line:
# Split the line into token and tag
token_tag_pair = line.split()
if len(token_tag_pair) == 2:
# Add the token and tag tuple to the current sentence
current_sentence.append((token_tag_pair[0].split(':')[1], token_tag_pair[1]))
else:
# If line is empty and current sentence is not, add it to sentences
if current_sentence:
sentences.append(current_sentence)
current_sentence = [] # Reset for the next sentence
# Add the last sentence if the file doesn't end with a blank line
if current_sentence:
sentences.append(current_sentence)
return sentences
####################################################################################################
### TOKENIZE DATASET ###############################################################################
####################################################################################################
def align_labels_with_tokens(labels, word_ids):
new_labels = []
current_word = None
for word_id in word_ids:
if word_id != current_word:
# Start of a new word!
current_word = word_id
label = -100 if word_id is None else labels[word_id]
new_labels.append(label)
elif word_id is None:
# Special token
new_labels.append(-100)
else:
# Same word as previous token
label = labels[word_id]
# If the label is B-XXX we change it to I-XXX
if label % 2 == 1:
label += 1
new_labels.append(label)
return new_labels
def align_gazetteers_with_tokens(gazetteers, word_ids):
aligned_gazetteers = []
current_word = None
for word_id in word_ids:
if word_id != current_word:
# Start of a new word!
current_word = word_id
gazetteer = [0,0,0] if word_id is None else gazetteers[word_id]
aligned_gazetteers.append(gazetteer)
elif word_id is None:
# Special token
aligned_gazetteers.append([0,0,0])
else:
# Same word as previous token
gazetteer = gazetteers[word_id]
aligned_gazetteers.append(gazetteer)
return aligned_gazetteers
def create_tokenized_dataset(raw_dataset, tokenizer, apply_extended_embeddings=True):
def tokenize_and_align_labels(examples):
tokenized_inputs = tokenizer(
examples["tokens"], truncation=True, is_split_into_words=True
)
all_labels = examples["ner_tags"]
new_labels = []
for i, labels in enumerate(all_labels):
word_ids = tokenized_inputs.word_ids(i)
new_labels.append(align_labels_with_tokens(labels, word_ids))
tokenized_inputs["labels"] = new_labels
if apply_extended_embeddings:
matches = examples["gazetteers"]
aligned_matches = []
for i, match in enumerate(matches):
word_ids = tokenized_inputs.word_ids(i)
aligned_matches.append(align_gazetteers_with_tokens(match, word_ids))
per, org, loc = [], [], []
for i in aligned_matches:
per.append([x[0] for x in i])
org.append([x[1] for x in i])
loc.append([x[2] for x in i])
tokenized_inputs["per"] = per
tokenized_inputs["org"] = org
tokenized_inputs["loc"] = loc
return tokenized_inputs
dataset = raw_dataset.map(
tokenize_and_align_labels,
batched=True,
# remove_columns=raw_dataset["train"].column_names
)
return dataset |