Spaces:
Sleeping
Sleeping
File size: 9,967 Bytes
ef6936b 5cc310e ef6936b 03c4f84 ef6936b 03c4f84 ef6936b 03c4f84 ef6936b 03c4f84 ef6936b bb94458 ef6936b bb94458 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core import QueryBundle
import time
import gradio as gr
import pandas as pd
from llama_index.core.postprocessor import LLMRerank
from IPython.display import display, HTML
from llama_index.core.vector_stores import (
MetadataFilter,
MetadataFilters,
FilterOperator,
FilterOperator
)
from llama_index.core.tools import RetrieverTool
from llama_index.core.retrievers import RouterRetriever
from llama_index.core.selectors import PydanticSingleSelector
from llama_index.core import (
VectorStoreIndex,
SimpleKeywordTableIndex,
SimpleDirectoryReader,
)
from llama_index.core import SummaryIndex, Settings
from llama_index.core.schema import IndexNode
from llama_index.core.tools import QueryEngineTool, ToolMetadata
from llama_index.llms.openai import OpenAI
from llama_index.core.callbacks import CallbackManager
from llama_index.core import Document
import os
from llama_index.embeddings.openai import OpenAIEmbedding
import nest_asyncio
import pandas as pd
import hashlib
import tiktoken
from dotenv import load_dotenv
load_dotenv()
nest_asyncio.apply()
openai_key = os.getenv('openai_key_secret')
os.environ["OPENAI_API_KEY"] = openai_key
llm=OpenAI(temperature=0, model="gpt-4o")
Settings.llm = llm
Settings.embed_model = OpenAIEmbedding(model="text-embedding-ada-002")
ds=pd.read_excel("data_metropole 2.xlsx")
# df est la DATAFRAME qui contient le fichier source
df=ds.drop(columns=['Theme ID', 'SousTheme ID', 'Signataire Matricule',
'Suppleant Matricule', 'Date Nomination', 'Date Commite Technique', 'Numero',
'Libelle', 'Date Creation', 'Date Debut'])
#la DATAFRAME (filter_signataire) est celle qui contient les colonne relative au signataire
#la DATAFRAME (filter) est celle qui contient les colonne relative au département
filter_signataire = df[['Signataire', 'Fonction']]
filter_signataire = filter_signataire.drop_duplicates()
filter = df[['Collectivite', 'Direction DGA', 'Liste Service Text']]
filter = filter.drop_duplicates()
# pre traitement est cleaning des dataframe
df = df.dropna(subset=['Item Text'])
df_sorted = df.sort_values(by=['Collectivite', 'Direction DGA', 'Liste Service Text', 'Item Text','Theme Title','SousTheme Title','Item Text'])
#traietement des dataframe
df.loc[:, 'content'] = df.apply(lambda x: f'''
/ Theme : {x['Theme Title'] or ''}
/ Sous-Theme : {x['SousTheme Title'] or ''}
/ Item : {x['Item Text'] or ''}
/ Signataire : {x['Signataire'] or ''}
/ Suppleant : {x['Suppleant'] or ''}
/ Les services : {x['Liste Service Text'] or ''}
''', axis=1)
#############
df = df.fillna(value='')
filter = filter.fillna(value='')
filter_signataire = filter_signataire.fillna(value='')
#############
df.loc[:, 'description'] = df.apply(lambda x: f'''Collectivite : {x['Collectivite'] or ''}
Direction : {x['Direction DGA'] or ''}
Liste des Service : {x['Liste Service Text'] or ''}
''', axis=1)
filter.loc[:, 'description'] = filter.apply(lambda x: f'''Collectivite : {x['Collectivite'] or ''}
Direction : {x['Direction DGA'] or ''}
Liste des Service : {x['Liste Service Text'] or ''}
''', axis=1)
filter_signataire.loc[:, 'description'] = filter_signataire.apply(lambda x: f'''Signataire : {x['Signataire'] or ''}
Fonction : {x['Fonction'] or ''}
''', axis=1)
def hachage(row):
return hashlib.sha1(row.encode("utf-8")).hexdigest()
# le hashage
df['hash'] = df.apply(lambda x: hachage(f'''Collectivite : {x['Collectivite'] or ''}
Direction : {x['Direction DGA'] or ''}
Liste des Service : {x['Liste Service Text'] or ''}
'''), axis=1)
filter['hash'] = filter.apply(lambda x: hachage(f'''Collectivite : {x['Collectivite'] or ''}
Direction : {x['Direction DGA'] or ''}
Liste des Service : {x['Liste Service Text'] or ''}
'''), axis=1)
#################################################"
filter_signataire['hash'] = filter_signataire.apply(lambda x: hachage(f'''Signataire : {x['Signataire'] or ''}
'''), axis=1)
#construction des DOCUMENTS pour la vectorisation
description_docs = [Document(text=row['description'],metadata={"id_documents": row['hash']}) for index, row in filter.iterrows()]
content_docs = [Document(text=row['content'],metadata={"id_documents": row['hash']}) for index, row in df.iterrows()]
signataire_docs = [Document(text=row['Signataire'],metadata={"id_signataire": row['hash']}) for index, row in filter_signataire.iterrows()]
content_signataire = [Document(text=row['content'],metadata={"id_signataire": row['hash']}) for index, row in df.iterrows()]
print(' VectorStore for : __ index __')
index = VectorStoreIndex.from_documents(
description_docs,
show_progress = True
)
print(' VectorStore for : __ index_all __')
index_all = VectorStoreIndex.from_documents(
content_docs,
show_progress = True
)
print(' VectorStore for : __ index_signataire __')
index_signataire = VectorStoreIndex.from_documents(
signataire_docs,
show_progress = True
)
print(' VectorStore for : __ index_allèsignataire __')
index_all_signataire = VectorStoreIndex.from_documents(
content_signataire,
show_progress = True
)
def get_retrieved_nodes(
query_str, vector_top_k=10, reranker_top_n=3, with_reranker=False,index=index):
query_bundle = QueryBundle(query_str)
# configure retriever
retriever = VectorIndexRetriever(
index=index,
similarity_top_k=vector_top_k,
)
retrieved_nodes = retriever.retrieve(query_bundle)
if with_reranker:
# configure reranker
reranker = LLMRerank(
choice_batch_size=5,
top_n=reranker_top_n,
)
retrieved_nodes = reranker.postprocess_nodes(
retrieved_nodes, query_bundle
)
return retrieved_nodes
def get_all_text(new_nodes):
texts = []
for i, node in enumerate(new_nodes, 1):
texts.append(f"\nDocument {i} : {node.get_text()}")
return ' '.join(texts)
def further_retrieve(query):
# Retrieve new nodes based on the query
new_nodes = get_retrieved_nodes(
query,
index=index,
vector_top_k=10,
reranker_top_n=5,
with_reranker=False,
)
new_nodes_signataire = get_retrieved_nodes(
query,
index=index_all_signataire,
vector_top_k=10,
reranker_top_n=5,
with_reranker=False,
)
filters = MetadataFilters(
filters=[
MetadataFilter(key="id_documents", value=[node.metadata['id_documents'] for node in new_nodes], operator=FilterOperator.IN)
],
)
filters_s = MetadataFilters(
filters=[
MetadataFilter(key="id_signataire", value=[node.metadata['id_signataire'] for node in new_nodes_signataire], operator=FilterOperator.IN)
],
)
# Create a retriever with the specified filters
retriever_description = index_all.as_retriever(filters=filters, similarity_top_k=15)
retriever_signataire= index_all_signataire.as_retriever(filters=filters_s,similarity_top_k=4)
# initialize tools
description_tool = RetrieverTool.from_defaults(
retriever=retriever_description,
description="Useful for retrieving specific context from direction, liste service and collectivite",
)
signataire_tool = RetrieverTool.from_defaults(
retriever=retriever_signataire,
description="Useful for retrieving specific context from signataire and fonction",
)
# define retriever
retriever = RouterRetriever(
selector=PydanticSingleSelector.from_defaults(llm=llm),
retriever_tools=[
description_tool,
signataire_tool,
],
)
try :
query_bundle = QueryBundle(query)
# Retrieve nodes based on the original query and filters
retrieved_nodes = retriever.retrieve(query_bundle)
reranker = LLMRerank(
choice_batch_size=5, # Process 5 nodes at a time
top_n=7 # Return the top 7 reranked nodes
)
# Post-process the retrieved nodes by reranking them
reranked_nodes = reranker.postprocess_nodes(retrieved_nodes, query_bundle)
return get_all_text(reranked_nodes)
except :
print("No rerank")
return get_all_text(retriever.retrieve(query))
def estimate_tokens(text):
# Encoder le texte pour obtenir les tokens
encoding = tiktoken.get_encoding("cl100k_base")
tokens = encoding.encode(text)
return len(tokens)
def prompt_objectif(user_input):
from openai import OpenAI
client = OpenAI(api_key=openai_key)
documents = further_retrieve(user_input)
try:
# Tokenize the text using tiktoken
encoder = tiktoken.get_encoding("cl100k_base")
tokens = encoder.encode(user_input)
encoded_text = encoder.decode(tokens)
# Make the API call to the language model
response = client.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "system", "content": f"""Tu es un assistant utile. L'utilisateur posera une question et tu devras trouver la réponse dans les documents suivants.Focalise sur les service et la direction du signataire que l'utilisateur cherche. Tu ne dois pas poser de question en retour.Tu ne sois mentionner le numéro des documents. Tu t'exprimes dans la même langue que l'utilisateur.,
DOCUMENTS :
{documents}"""},
{"role": "user", "content": user_input},
]
)
# Extract and return the generated response
resultat = response.choices[0].message.content
for word in resultat.split():
yield word + " "
time.sleep(0.05)
except Exception as e:
message_error = f"Failed to generate questions: {e}"
for word in message_error.split():
yield word + " "
time.sleep(0.05)
|