Kit-Lemonfoot commited on
Commit
73c9dc8
·
1 Parent(s): bf6acc4

And so it begins.

Browse files
Files changed (1) hide show
  1. app.py +508 -0
app.py ADDED
@@ -0,0 +1,508 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import glob
3
+ import json
4
+ import traceback
5
+ import logging
6
+ import gradio as gr
7
+ import numpy as np
8
+ import librosa
9
+ import torch
10
+ import asyncio
11
+ import edge_tts
12
+ import yt_dlp
13
+ import ffmpeg
14
+ import subprocess
15
+ import sys
16
+ import io
17
+ import wave
18
+ from datetime import datetime
19
+ from fairseq import checkpoint_utils
20
+ from lib.infer_pack.models import (
21
+ SynthesizerTrnMs256NSFsid,
22
+ SynthesizerTrnMs256NSFsid_nono,
23
+ SynthesizerTrnMs768NSFsid,
24
+ SynthesizerTrnMs768NSFsid_nono,
25
+ )
26
+ from vc_infer_pipeline import VC
27
+ from config import Config
28
+ config = Config()
29
+ logging.getLogger("numba").setLevel(logging.WARNING)
30
+ limitation = os.getenv("SYSTEM") == "spaces"
31
+
32
+ audio_mode = []
33
+ f0method_mode = ["pm", "crepe", "harvest"]
34
+ f0method_info = "PM is fast, rmvpe is middle. Crepe or harvest is good but it was extremely slow (Default: PM))"
35
+ if limitation is True:
36
+ audio_mode = ["TTS Audio", "Upload audio"]
37
+ else:
38
+ audio_mode = ["TTS Audio", "Youtube", "Upload audio"]
39
+
40
+ if os.path.isfile("rmvpe.pt"):
41
+ f0method_mode.append("rmvpe")
42
+
43
+ def infer(name, path, index, vc_audio_mode, vc_input, vc_upload, tts_text, tts_voice, f0_up_key, f0_method, index_rate, filter_radius, resample_sr, rms_mix_rate, protect):
44
+ try:
45
+ #Setup audio
46
+ if vc_audio_mode == "Input path" or "Youtube" and vc_input != "":
47
+ audio, sr = librosa.load(vc_input, sr=16000, mono=True)
48
+ elif vc_audio_mode == "Upload audio":
49
+ if vc_upload is None:
50
+ return "You need to upload an audio.", None
51
+ sampling_rate, audio = vc_upload
52
+ duration = audio.shape[0] / sampling_rate
53
+ if duration > 360 and limitation:
54
+ return "Please upload an audio file that is less than 1 minute.", None
55
+ audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
56
+ if len(audio.shape) > 1:
57
+ audio = librosa.to_mono(audio.transpose(1, 0))
58
+ if sampling_rate != 16000:
59
+ audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
60
+ elif vc_audio_mode == "TTS Audio":
61
+ if len(tts_text) > 600 and limitation:
62
+ return "Text is too long.", None
63
+ if tts_text is None or tts_voice is None:
64
+ return "You need to enter text and select a voice.", None
65
+ asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save("tts.mp3"))
66
+ audio, sr = librosa.load("tts.mp3", sr=16000, mono=True)
67
+ vc_input = "tts.mp3"
68
+ times = [0, 0, 0]
69
+ f0_up_key = int(f0_up_key)
70
+
71
+ #Setup model
72
+ cpt = torch.load(f"{path}", map_location="cpu")
73
+ tgt_sr = cpt["config"][-1]
74
+ cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
75
+ if_f0 = cpt.get("f0", 1)
76
+ version = cpt.get("version", "v1")
77
+ if version == "v1":
78
+ if if_f0 == 1:
79
+ net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
80
+ else:
81
+ net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
82
+ model_version = "V1"
83
+ elif version == "v2":
84
+ if if_f0 == 1:
85
+ net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
86
+ else:
87
+ net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
88
+ model_version = "V2"
89
+ del net_g.enc_q
90
+ print(net_g.load_state_dict(cpt["weight"], strict=False))
91
+ net_g.eval().to(config.device)
92
+ if config.is_half:
93
+ net_g = net_g.half()
94
+ else:
95
+ net_g = net_g.float()
96
+ vc = VC(tgt_sr, config)
97
+
98
+ #Gen audio
99
+ audio_opt = vc.pipeline(
100
+ hubert_model,
101
+ net_g,
102
+ 0,
103
+ audio,
104
+ vc_input,
105
+ times,
106
+ f0_up_key,
107
+ f0_method,
108
+ index,
109
+ # file_big_npy,
110
+ index_rate,
111
+ if_f0,
112
+ filter_radius,
113
+ tgt_sr,
114
+ resample_sr,
115
+ rms_mix_rate,
116
+ version,
117
+ protect,
118
+ f0_file=None,
119
+ )
120
+ info = f"[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s"
121
+ print(f"Successful inference with model {name} | {tts_text} | {info}")
122
+ del net_g, vc, cpt
123
+ return info, (tgt_sr, audio_opt)
124
+ except:
125
+ info = traceback.format_exc()
126
+ print(info)
127
+ return info, (None, None)
128
+
129
+ def load_model():
130
+ categories = []
131
+ with open("weights/folder_info.json", "r", encoding="utf-8") as f:
132
+ folder_info = json.load(f)
133
+ for category_name, category_info in folder_info.items():
134
+ if not category_info['enable']:
135
+ continue
136
+ category_title = category_info['title']
137
+ category_folder = category_info['folder_path']
138
+ models = []
139
+ print(f"Creating category {category_title}...")
140
+ with open(f"weights/{category_folder}/model_info.json", "r", encoding="utf-8") as f:
141
+ models_info = json.load(f)
142
+ for character_name, info in models_info.items():
143
+ if not info['enable']:
144
+ continue
145
+ model_title = info['title']
146
+ model_name = info['model_path']
147
+ model_author = info.get("author", None)
148
+ model_cover = f"weights/{category_folder}/{character_name}/{info['cover']}"
149
+ model_index = f"weights/{category_folder}/{character_name}/{info['feature_retrieval_library']}"
150
+ model_path = f"weights/{category_folder}/{character_name}/{model_name}"
151
+ cpt = torch.load(f"weights/{category_folder}/{character_name}/{model_name}", map_location="cpu")
152
+ model_version = cpt.get("version", "v1")
153
+ print(f"Indexed model {model_title} by {model_author} ({model_version})")
154
+ models.append((character_name, model_title, model_author, model_cover, model_version, model_path, model_index))
155
+ del cpt
156
+ categories.append([category_title, category_folder, models])
157
+ return categories
158
+
159
+ def cut_vocal_and_inst(url, audio_provider, split_model):
160
+ if url != "":
161
+ if not os.path.exists("dl_audio"):
162
+ os.mkdir("dl_audio")
163
+ if audio_provider == "Youtube":
164
+ ydl_opts = {
165
+ 'format': 'bestaudio/best',
166
+ 'postprocessors': [{
167
+ 'key': 'FFmpegExtractAudio',
168
+ 'preferredcodec': 'wav',
169
+ }],
170
+ "outtmpl": 'dl_audio/youtube_audio',
171
+ }
172
+ with yt_dlp.YoutubeDL(ydl_opts) as ydl:
173
+ ydl.download([url])
174
+ audio_path = "dl_audio/youtube_audio.wav"
175
+ else:
176
+ # Spotify doesnt work.
177
+ # Need to find other solution soon.
178
+ '''
179
+ command = f"spotdl download {url} --output dl_audio/.wav"
180
+ result = subprocess.run(command.split(), stdout=subprocess.PIPE)
181
+ print(result.stdout.decode())
182
+ audio_path = "dl_audio/spotify_audio.wav"
183
+ '''
184
+ if split_model == "htdemucs":
185
+ command = f"demucs --two-stems=vocals {audio_path} -o output"
186
+ result = subprocess.run(command.split(), stdout=subprocess.PIPE)
187
+ print(result.stdout.decode())
188
+ return "output/htdemucs/youtube_audio/vocals.wav", "output/htdemucs/youtube_audio/no_vocals.wav", audio_path, "output/htdemucs/youtube_audio/vocals.wav"
189
+ else:
190
+ command = f"demucs --two-stems=vocals -n mdx_extra_q {audio_path} -o output"
191
+ result = subprocess.run(command.split(), stdout=subprocess.PIPE)
192
+ print(result.stdout.decode())
193
+ return "output/mdx_extra_q/youtube_audio/vocals.wav", "output/mdx_extra_q/youtube_audio/no_vocals.wav", audio_path, "output/mdx_extra_q/youtube_audio/vocals.wav"
194
+ else:
195
+ raise gr.Error("URL Required!")
196
+ return None, None, None, None
197
+
198
+ def combine_vocal_and_inst(audio_data, audio_volume, split_model):
199
+ if not os.path.exists("output/result"):
200
+ os.mkdir("output/result")
201
+ vocal_path = "output/result/output.wav"
202
+ output_path = "output/result/combine.mp3"
203
+ if split_model == "htdemucs":
204
+ inst_path = "output/htdemucs/youtube_audio/no_vocals.wav"
205
+ else:
206
+ inst_path = "output/mdx_extra_q/youtube_audio/no_vocals.wav"
207
+ with wave.open(vocal_path, "w") as wave_file:
208
+ wave_file.setnchannels(1)
209
+ wave_file.setsampwidth(2)
210
+ wave_file.setframerate(audio_data[0])
211
+ wave_file.writeframes(audio_data[1].tobytes())
212
+ command = f'ffmpeg -y -i {inst_path} -i {vocal_path} -filter_complex [1:a]volume={audio_volume}dB[v];[0:a][v]amix=inputs=2:duration=longest -b:a 320k -c:a libmp3lame {output_path}'
213
+ result = subprocess.run(command.split(), stdout=subprocess.PIPE)
214
+ print(result.stdout.decode())
215
+ return output_path
216
+
217
+ def load_hubert():
218
+ global hubert_model
219
+ models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
220
+ ["hubert_base.pt"],
221
+ suffix="",
222
+ )
223
+ hubert_model = models[0]
224
+ hubert_model = hubert_model.to(config.device)
225
+ if config.is_half:
226
+ hubert_model = hubert_model.half()
227
+ else:
228
+ hubert_model = hubert_model.float()
229
+ hubert_model.eval()
230
+
231
+ def change_audio_mode(vc_audio_mode):
232
+ if vc_audio_mode == "Input path":
233
+ return (
234
+ # Input & Upload
235
+ gr.Textbox.update(visible=True),
236
+ gr.Audio.update(visible=False),
237
+ # Youtube
238
+ gr.Dropdown.update(visible=False),
239
+ gr.Textbox.update(visible=False),
240
+ gr.Dropdown.update(visible=False),
241
+ gr.Button.update(visible=False),
242
+ gr.Audio.update(visible=False),
243
+ gr.Audio.update(visible=False),
244
+ gr.Audio.update(visible=False),
245
+ gr.Slider.update(visible=False),
246
+ gr.Audio.update(visible=False),
247
+ gr.Button.update(visible=False),
248
+ # TTS
249
+ gr.Textbox.update(visible=False),
250
+ gr.Dropdown.update(visible=False)
251
+ )
252
+ elif vc_audio_mode == "Upload audio":
253
+ return (
254
+ # Input & Upload
255
+ gr.Textbox.update(visible=False),
256
+ gr.Audio.update(visible=True),
257
+ # Youtube
258
+ gr.Dropdown.update(visible=False),
259
+ gr.Textbox.update(visible=False),
260
+ gr.Dropdown.update(visible=False),
261
+ gr.Button.update(visible=False),
262
+ gr.Audio.update(visible=False),
263
+ gr.Audio.update(visible=False),
264
+ gr.Audio.update(visible=False),
265
+ gr.Slider.update(visible=False),
266
+ gr.Audio.update(visible=False),
267
+ gr.Button.update(visible=False),
268
+ # TTS
269
+ gr.Textbox.update(visible=False),
270
+ gr.Dropdown.update(visible=False)
271
+ )
272
+ elif vc_audio_mode == "Youtube":
273
+ return (
274
+ # Input & Upload
275
+ gr.Textbox.update(visible=False),
276
+ gr.Audio.update(visible=False),
277
+ # Youtube
278
+ gr.Dropdown.update(visible=True),
279
+ gr.Textbox.update(visible=True),
280
+ gr.Dropdown.update(visible=True),
281
+ gr.Button.update(visible=True),
282
+ gr.Audio.update(visible=True),
283
+ gr.Audio.update(visible=True),
284
+ gr.Audio.update(visible=True),
285
+ gr.Slider.update(visible=True),
286
+ gr.Audio.update(visible=True),
287
+ gr.Button.update(visible=True),
288
+ # TTS
289
+ gr.Textbox.update(visible=False),
290
+ gr.Dropdown.update(visible=False)
291
+ )
292
+ elif vc_audio_mode == "TTS Audio":
293
+ return (
294
+ # Input & Upload
295
+ gr.Textbox.update(visible=False),
296
+ gr.Audio.update(visible=False),
297
+ # Youtube
298
+ gr.Dropdown.update(visible=False),
299
+ gr.Textbox.update(visible=False),
300
+ gr.Dropdown.update(visible=False),
301
+ gr.Button.update(visible=False),
302
+ gr.Audio.update(visible=False),
303
+ gr.Audio.update(visible=False),
304
+ gr.Audio.update(visible=False),
305
+ gr.Slider.update(visible=False),
306
+ gr.Audio.update(visible=False),
307
+ gr.Button.update(visible=False),
308
+ # TTS
309
+ gr.Textbox.update(visible=True),
310
+ gr.Dropdown.update(visible=True)
311
+ )
312
+ else:
313
+ return (
314
+ # Input & Upload
315
+ gr.Textbox.update(visible=False),
316
+ gr.Audio.update(visible=True),
317
+ # Youtube
318
+ gr.Dropdown.update(visible=False),
319
+ gr.Textbox.update(visible=False),
320
+ gr.Dropdown.update(visible=False),
321
+ gr.Button.update(visible=False),
322
+ gr.Audio.update(visible=False),
323
+ gr.Audio.update(visible=False),
324
+ gr.Audio.update(visible=False),
325
+ gr.Slider.update(visible=False),
326
+ gr.Audio.update(visible=False),
327
+ gr.Button.update(visible=False),
328
+ # TTS
329
+ gr.Textbox.update(visible=False, interactive=True),
330
+ gr.Dropdown.update(visible=False, interactive=True)
331
+ )
332
+
333
+ if __name__ == '__main__':
334
+ load_hubert()
335
+ categories = load_model()
336
+ tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
337
+ voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]
338
+ with gr.Blocks(theme=gr.themes.Base()) as app:
339
+ gr.Markdown(
340
+ "# <center> VTuber RVC Models\n"
341
+ "### <center> Space by Kit Lemonfoot / Noel Shirogane's High Flying Birds"
342
+ "<center> Original space by megaaziib & zomehwh\n"
343
+ "### <center> Please credit the original model authors if you use this Space.\n"
344
+ "<center> (I will be adding more tabs later. Don't ask.)\n"
345
+ )
346
+ for (folder_title, folder, models) in categories:
347
+ with gr.TabItem(folder_title):
348
+ with gr.Tabs():
349
+ if not models:
350
+ gr.Markdown("# <center> No Model Loaded.")
351
+ gr.Markdown("## <center> Please add model or fix your model path.")
352
+ continue
353
+ for (name, title, author, cover, model_version, model_path, model_index) in models:
354
+ with gr.TabItem(name):
355
+ with gr.Row():
356
+ gr.Markdown(
357
+ '<div align="center">'
358
+ f'<div>{title}</div>\n'+
359
+ f'<div>RVC {model_version} Model</div>\n'+
360
+ (f'<div>Model author: {author}</div>' if author else "")+
361
+ (f'<img style="width:auto;height:300px;" src="file/{cover}">' if cover else "")+
362
+ '</div>'
363
+ )
364
+ with gr.Row():
365
+ with gr.Column():
366
+ vc_audio_mode = gr.Dropdown(label="Input voice", choices=audio_mode, allow_custom_value=False, value="TTS Audio")
367
+ # Input and Upload
368
+ vc_input = gr.Textbox(label="Input audio path", visible=False)
369
+ vc_upload = gr.Audio(label="Upload audio file", visible=False, interactive=True)
370
+ # Youtube
371
+ vc_download_audio = gr.Dropdown(label="Provider", choices=["Youtube"], allow_custom_value=False, visible=False, value="Youtube", info="Select provider (Default: Youtube)")
372
+ vc_link = gr.Textbox(label="Youtube URL", visible=False, info="Example: https://www.youtube.com/watch?v=Nc0sB1Bmf-A", placeholder="https://www.youtube.com/watch?v=...")
373
+ vc_split_model = gr.Dropdown(label="Splitter Model", choices=["htdemucs", "mdx_extra_q"], allow_custom_value=False, visible=False, value="htdemucs", info="Select the splitter model (Default: htdemucs)")
374
+ vc_split = gr.Button("Split Audio", variant="primary", visible=False)
375
+ vc_vocal_preview = gr.Audio(label="Vocal Preview", visible=False)
376
+ vc_inst_preview = gr.Audio(label="Instrumental Preview", visible=False)
377
+ vc_audio_preview = gr.Audio(label="Audio Preview", visible=False)
378
+ # TTS
379
+ tts_text = gr.Textbox(visible=True, label="TTS text", info="Text to speech input", interactive=True)
380
+ tts_voice = gr.Dropdown(label="Edge-tts speaker", choices=voices, visible=True, allow_custom_value=False, value="en-US-AnaNeural-Female", interactive=True)
381
+ with gr.Column():
382
+ vc_transform0 = gr.Number(label="Transpose", value=0, info='Type "12" to change from male to female voice. Type "-12" to change female to male voice')
383
+ f0method0 = gr.Radio(
384
+ label="Pitch extraction algorithm",
385
+ info=f0method_info,
386
+ choices=f0method_mode,
387
+ value="rmvpe",
388
+ interactive=True
389
+ )
390
+ index_rate1 = gr.Slider(
391
+ minimum=0,
392
+ maximum=1,
393
+ label="Retrieval feature ratio",
394
+ info="Accents controling. Too high prob gonna sounds too robotic (Default: 0.4)",
395
+ value=0.4,
396
+ interactive=True,
397
+ )
398
+ filter_radius0 = gr.Slider(
399
+ minimum=0,
400
+ maximum=7,
401
+ label="Apply Median Filtering",
402
+ info="The value represents the filter radius and can reduce breathiness.",
403
+ value=1,
404
+ step=1,
405
+ interactive=True,
406
+ )
407
+ resample_sr0 = gr.Slider(
408
+ minimum=0,
409
+ maximum=48000,
410
+ label="Resample the output audio",
411
+ info="Resample the output audio in post-processing to the final sample rate. Set to 0 for no resampling",
412
+ value=0,
413
+ step=1,
414
+ interactive=True,
415
+ )
416
+ rms_mix_rate0 = gr.Slider(
417
+ minimum=0,
418
+ maximum=1,
419
+ label="Volume Envelope",
420
+ info="Use the volume envelope of the input to replace or mix with the volume envelope of the output. The closer the ratio is to 1, the more the output envelope is used",
421
+ value=1,
422
+ interactive=True,
423
+ )
424
+ protect0 = gr.Slider(
425
+ minimum=0,
426
+ maximum=0.5,
427
+ label="Voice Protection",
428
+ info="Protect voiceless consonants and breath sounds to prevent artifacts such as tearing in electronic music. Set to 0.5 to disable. Decrease the value to increase protection, but it may reduce indexing accuracy",
429
+ value=0.23,
430
+ step=0.01,
431
+ interactive=True,
432
+ )
433
+ with gr.Column():
434
+ vc_log = gr.Textbox(label="Output Information", interactive=False)
435
+ vc_output = gr.Audio(label="Output Audio", interactive=False)
436
+ #This is a fucking stupid solution but Gradio refuses to pass in values unless I do this.
437
+ vc_name = gr.Textbox(value=title, visible=False, interactive=False)
438
+ vc_mp = gr.Textbox(value=model_path, visible=False, interactive=False)
439
+ vc_mi = gr.Textbox(value=model_index, visible=False, interactive=False)
440
+ vc_convert = gr.Button("Convert", variant="primary")
441
+ vc_volume = gr.Slider(
442
+ minimum=0,
443
+ maximum=10,
444
+ label="Vocal volume",
445
+ value=4,
446
+ interactive=True,
447
+ step=1,
448
+ info="Adjust vocal volume (Default: 4}",
449
+ visible=False
450
+ )
451
+ vc_combined_output = gr.Audio(label="Output Combined Audio", visible=False)
452
+ vc_combine = gr.Button("Combine",variant="primary", visible=False)
453
+
454
+ vc_convert.click(
455
+ fn=infer,
456
+ inputs=[
457
+ vc_name,
458
+ vc_mp,
459
+ vc_mi,
460
+ vc_audio_mode,
461
+ vc_input,
462
+ vc_upload,
463
+ tts_text,
464
+ tts_voice,
465
+ vc_transform0,
466
+ f0method0,
467
+ index_rate1,
468
+ filter_radius0,
469
+ resample_sr0,
470
+ rms_mix_rate0,
471
+ protect0,
472
+ ],
473
+ outputs=[vc_log, vc_output]
474
+ )
475
+ vc_split.click(
476
+ fn=cut_vocal_and_inst,
477
+ inputs=[vc_link, vc_download_audio, vc_split_model],
478
+ outputs=[vc_vocal_preview, vc_inst_preview, vc_audio_preview, vc_input]
479
+ )
480
+ vc_combine.click(
481
+ fn=combine_vocal_and_inst,
482
+ inputs=[vc_output, vc_volume, vc_split_model],
483
+ outputs=[vc_combined_output]
484
+ )
485
+ vc_audio_mode.change(
486
+ fn=change_audio_mode,
487
+ inputs=[vc_audio_mode],
488
+ outputs=[
489
+ vc_input,
490
+ vc_upload,
491
+ vc_download_audio,
492
+ vc_link,
493
+ vc_split_model,
494
+ vc_split,
495
+ vc_vocal_preview,
496
+ vc_inst_preview,
497
+ vc_audio_preview,
498
+ vc_volume,
499
+ vc_combined_output,
500
+ vc_combine,
501
+ tts_text,
502
+ tts_voice
503
+ ]
504
+ )
505
+ if limitation is True:
506
+ app.queue(concurrency_count=1, max_size=20, api_open=config.api).launch(share=config.colab)
507
+ else:
508
+ app.queue(concurrency_count=1, max_size=20, api_open=config.api).launch(share=False)