|
from typing import List, Optional, Tuple |
|
|
|
import numpy as np |
|
import torch |
|
from torch.nn import functional as F |
|
|
|
|
|
def get_position_map_from_depth(depth, mask, intrinsics, extrinsics, image_wh=None): |
|
"""Compute the position map from the depth map and the camera parameters for a batch of views. |
|
|
|
Args: |
|
depth (torch.Tensor): The depth maps with the shape (B, H, W, 1). |
|
mask (torch.Tensor): The masks with the shape (B, H, W, 1). |
|
intrinsics (torch.Tensor): The camera intrinsics matrices with the shape (B, 3, 3). |
|
extrinsics (torch.Tensor): The camera extrinsics matrices with the shape (B, 4, 4). |
|
image_wh (Tuple[int, int]): The image width and height. |
|
|
|
Returns: |
|
torch.Tensor: The position maps with the shape (B, H, W, 3). |
|
""" |
|
if image_wh is None: |
|
image_wh = depth.shape[2], depth.shape[1] |
|
|
|
B, H, W, _ = depth.shape |
|
depth = depth.squeeze(-1) |
|
|
|
u_coord, v_coord = torch.meshgrid( |
|
torch.arange(image_wh[0]), torch.arange(image_wh[1]), indexing="xy" |
|
) |
|
u_coord = u_coord.type_as(depth).unsqueeze(0).expand(B, -1, -1) |
|
v_coord = v_coord.type_as(depth).unsqueeze(0).expand(B, -1, -1) |
|
|
|
|
|
x = ( |
|
(u_coord - intrinsics[:, 0, 2].unsqueeze(-1).unsqueeze(-1)) |
|
* depth |
|
/ intrinsics[:, 0, 0].unsqueeze(-1).unsqueeze(-1) |
|
) |
|
y = ( |
|
(v_coord - intrinsics[:, 1, 2].unsqueeze(-1).unsqueeze(-1)) |
|
* depth |
|
/ intrinsics[:, 1, 1].unsqueeze(-1).unsqueeze(-1) |
|
) |
|
z = depth |
|
|
|
|
|
camera_coords = torch.stack([x, y, z], dim=-1) |
|
|
|
|
|
coords_homogeneous = torch.nn.functional.pad( |
|
camera_coords, (0, 1), "constant", 1.0 |
|
) |
|
world_coords = torch.matmul( |
|
coords_homogeneous.view(B, -1, 4), extrinsics.transpose(1, 2) |
|
).view(B, H, W, 4) |
|
|
|
|
|
position_map = world_coords[..., :3] * mask |
|
|
|
return position_map |
|
|
|
|
|
def get_position_map_from_depth_ortho( |
|
depth, mask, extrinsics, ortho_scale, image_wh=None |
|
): |
|
"""Compute the position map from the depth map and the camera parameters for a batch of views |
|
using orthographic projection with a given ortho_scale. |
|
|
|
Args: |
|
depth (torch.Tensor): The depth maps with the shape (B, H, W, 1). |
|
mask (torch.Tensor): The masks with the shape (B, H, W, 1). |
|
extrinsics (torch.Tensor): The camera extrinsics matrices with the shape (B, 4, 4). |
|
ortho_scale (torch.Tensor): The scaling factor for the orthographic projection with the shape (B, 1, 1, 1). |
|
image_wh (Tuple[int, int]): Optional. The image width and height. |
|
|
|
Returns: |
|
torch.Tensor: The position maps with the shape (B, H, W, 3). |
|
""" |
|
if image_wh is None: |
|
image_wh = depth.shape[2], depth.shape[1] |
|
|
|
B, H, W, _ = depth.shape |
|
depth = depth.squeeze(-1) |
|
|
|
|
|
u_coord, v_coord = torch.meshgrid( |
|
torch.arange(0, image_wh[0]), torch.arange(0, image_wh[1]), indexing="xy" |
|
) |
|
u_coord = u_coord.type_as(depth).unsqueeze(0).expand(B, -1, -1) |
|
v_coord = v_coord.type_as(depth).unsqueeze(0).expand(B, -1, -1) |
|
|
|
|
|
x = (u_coord - image_wh[0] / 2) / ortho_scale / image_wh[0] |
|
y = (v_coord - image_wh[1] / 2) / ortho_scale / image_wh[1] |
|
z = depth |
|
|
|
|
|
camera_coords = torch.stack([x, y, z], dim=-1) |
|
|
|
|
|
coords_homogeneous = torch.nn.functional.pad( |
|
camera_coords, (0, 1), "constant", 1.0 |
|
) |
|
world_coords = torch.matmul( |
|
coords_homogeneous.view(B, -1, 4), extrinsics.transpose(1, 2) |
|
).view(B, H, W, 4) |
|
|
|
|
|
position_map = world_coords[..., :3] * mask |
|
|
|
return position_map |
|
|
|
|
|
def get_opencv_from_blender(matrix_world, fov=None, image_size=None): |
|
|
|
opencv_world_to_cam = matrix_world.inverse() |
|
opencv_world_to_cam[1, :] *= -1 |
|
opencv_world_to_cam[2, :] *= -1 |
|
R, T = opencv_world_to_cam[:3, :3], opencv_world_to_cam[:3, 3] |
|
|
|
if fov is None: |
|
return R, T |
|
|
|
R, T = R.unsqueeze(0), T.unsqueeze(0) |
|
|
|
focal = 1 / np.tan(fov / 2) |
|
intrinsics = np.diag(np.array([focal, focal, 1])).astype(np.float32) |
|
opencv_cam_matrix = ( |
|
torch.from_numpy(intrinsics).unsqueeze(0).float().to(matrix_world.device) |
|
) |
|
opencv_cam_matrix[:, :2, -1] += torch.tensor([image_size / 2, image_size / 2]).to( |
|
matrix_world.device |
|
) |
|
opencv_cam_matrix[:, [0, 1], [0, 1]] *= image_size / 2 |
|
|
|
return R, T, opencv_cam_matrix |
|
|
|
|
|
def get_ray_directions( |
|
H: int, |
|
W: int, |
|
focal: float, |
|
principal: Optional[Tuple[float, float]] = None, |
|
use_pixel_centers: bool = True, |
|
) -> torch.Tensor: |
|
""" |
|
Get ray directions for all pixels in camera coordinate. |
|
Args: |
|
H, W, focal, principal, use_pixel_centers: image height, width, focal length, principal point and whether use pixel centers |
|
Outputs: |
|
directions: (H, W, 3), the direction of the rays in camera coordinate |
|
""" |
|
pixel_center = 0.5 if use_pixel_centers else 0 |
|
cx, cy = W / 2, H / 2 if principal is None else principal |
|
i, j = torch.meshgrid( |
|
torch.arange(W, dtype=torch.float32) + pixel_center, |
|
torch.arange(H, dtype=torch.float32) + pixel_center, |
|
indexing="xy", |
|
) |
|
directions = torch.stack( |
|
[(i - cx) / focal, -(j - cy) / focal, -torch.ones_like(i)], -1 |
|
) |
|
return F.normalize(directions, dim=-1) |
|
|
|
|
|
def get_rays( |
|
directions: torch.Tensor, c2w: torch.Tensor |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Get ray origins and directions from camera coordinates to world coordinates |
|
Args: |
|
directions: (H, W, 3) ray directions in camera coordinates |
|
c2w: (4, 4) camera-to-world transformation matrix |
|
Outputs: |
|
rays_o, rays_d: (H, W, 3) ray origins and directions in world coordinates |
|
""" |
|
|
|
rays_d = directions @ c2w[:3, :3].T |
|
rays_o = c2w[:3, 3].expand(rays_d.shape) |
|
return rays_o, rays_d |
|
|
|
|
|
def compute_plucker_embed( |
|
c2w: torch.Tensor, image_width: int, image_height: int, focal: float |
|
) -> torch.Tensor: |
|
""" |
|
Computes Plucker coordinates for a camera. |
|
Args: |
|
c2w: (4, 4) camera-to-world transformation matrix |
|
image_width: Image width |
|
image_height: Image height |
|
focal: Focal length of the camera |
|
Returns: |
|
plucker: (6, H, W) Plucker embedding |
|
""" |
|
directions = get_ray_directions(image_height, image_width, focal) |
|
rays_o, rays_d = get_rays(directions, c2w) |
|
|
|
cross = torch.cross(rays_o, rays_d, dim=-1) |
|
plucker = torch.cat((rays_d, cross), dim=-1) |
|
return plucker.permute(2, 0, 1) |
|
|
|
|
|
def get_plucker_embeds_from_cameras( |
|
c2w: List[torch.Tensor], fov: List[float], image_size: int |
|
) -> torch.Tensor: |
|
""" |
|
Given lists of camera transformations and fov, returns the batched plucker embeddings. |
|
Args: |
|
c2w: list of camera-to-world transformation matrices |
|
fov: list of field of view values |
|
image_size: size of the image |
|
Returns: |
|
plucker_embeds: (B, 6, H, W) batched plucker embeddings |
|
""" |
|
plucker_embeds = [] |
|
for cam_matrix, cam_fov in zip(c2w, fov): |
|
focal = 0.5 * image_size / np.tan(0.5 * cam_fov) |
|
plucker = compute_plucker_embed(cam_matrix, image_size, image_size, focal) |
|
plucker_embeds.append(plucker) |
|
return torch.stack(plucker_embeds) |
|
|
|
|
|
def get_plucker_embeds_from_cameras_ortho( |
|
c2w: List[torch.Tensor], ortho_scale: List[float], image_size: int |
|
): |
|
""" |
|
Given lists of camera transformations and fov, returns the batched plucker embeddings. |
|
|
|
Parameters: |
|
c2w: list of camera-to-world transformation matrices |
|
fov: list of field of view values |
|
image_size: size of the image |
|
|
|
Returns: |
|
plucker_embeds: plucker embeddings (B, 6, H, W) |
|
""" |
|
plucker_embeds = [] |
|
|
|
for cam_matrix, scale in zip(c2w, ortho_scale): |
|
|
|
R, T = get_opencv_from_blender(cam_matrix) |
|
cam_pos = -R.T @ T |
|
view_dir = R.T @ torch.tensor([0, 0, 1]).float().to(cam_matrix.device) |
|
|
|
cam_pos = F.normalize(cam_pos, dim=0) |
|
plucker = torch.concat([view_dir, cam_pos]) |
|
plucker = plucker.unsqueeze(-1).unsqueeze(-1).repeat(1, image_size, image_size) |
|
plucker_embeds.append(plucker) |
|
|
|
plucker_embeds = torch.stack(plucker_embeds) |
|
|
|
return plucker_embeds |
|
|