benjamin-paine commited on
Commit
f423428
·
verified ·
1 Parent(s): 4b66118

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -9
app.py CHANGED
@@ -1,6 +1,7 @@
1
  import gradio as gr
2
  import numpy as np
3
  import random
 
4
  import json
5
  import torch
6
  import spaces
@@ -27,15 +28,6 @@ if torch.cuda.is_available():
27
  else:
28
  torch_dtype = torch.float32
29
 
30
- # Initialize models from base SD3.5
31
- vae = AutoencoderKL.from_pretrained(model_repo_id, subfolder="vae")
32
- text_encoder = CLIPTextModelWithProjection.from_pretrained(model_repo_id, subfolder="text_encoder")
33
- text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(model_repo_id, subfolder="text_encoder_2")
34
- text_encoder_3 = T5EncoderModel.from_pretrained(mdoel_repo_id, subfolder="text_encoder_3")
35
- tokenizer = CLIPTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer")
36
- tokenizer_2 = CLIPTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer_2")
37
- tokenizer_3 = T5Tokenizer.from_pretrained(model_repo_id, subfolder="tokenizer_3")
38
-
39
  # Initialize transformer
40
  config_file = hf_hub_download(repo_id=model_repo_id, filename="transformer/config.json")
41
  with open(config_file, "r") as fp:
@@ -53,6 +45,20 @@ with safe_open(model_file, framework="pt") as f:
53
  state_dict = convert_sd3_transformer_checkpoint_to_diffusers(state_dict)
54
  transformer.load_state_dict(state_dict)
55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
  # Create pipeline from our models
57
  pipe = StableDiffusion3Pipeline(
58
  vae=vae,
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
+ import gc
5
  import json
6
  import torch
7
  import spaces
 
28
  else:
29
  torch_dtype = torch.float32
30
 
 
 
 
 
 
 
 
 
 
31
  # Initialize transformer
32
  config_file = hf_hub_download(repo_id=model_repo_id, filename="transformer/config.json")
33
  with open(config_file, "r") as fp:
 
45
  state_dict = convert_sd3_transformer_checkpoint_to_diffusers(state_dict)
46
  transformer.load_state_dict(state_dict)
47
 
48
+ # Try to keep memory usage down
49
+ del state_dict
50
+ gc.collect()
51
+
52
+ # Initialize models from base SD3.5
53
+ vae = AutoencoderKL.from_pretrained(model_repo_id, subfolder="vae")
54
+ text_encoder = CLIPTextModelWithProjection.from_pretrained(model_repo_id, subfolder="text_encoder")
55
+ text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(model_repo_id, subfolder="text_encoder_2")
56
+ text_encoder_3 = T5EncoderModel.from_pretrained(model_repo_id, subfolder="text_encoder_3")
57
+ tokenizer = CLIPTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer")
58
+ tokenizer_2 = CLIPTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer_2")
59
+ tokenizer_3 = T5Tokenizer.from_pretrained(model_repo_id, subfolder="tokenizer_3")
60
+
61
+
62
  # Create pipeline from our models
63
  pipe = StableDiffusion3Pipeline(
64
  vae=vae,