Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -21,14 +21,11 @@ from transformers import (
|
|
21 |
GemmaTokenizer
|
22 |
)
|
23 |
|
|
|
24 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
25 |
model_repo_id = "Alpha-VLLM/Lumina-Image-2.0"
|
26 |
transformer_repo_id = "benjamin-paine/Lumina-Image-2.0" # Temporarily fixed, change when main repo gets updated
|
27 |
-
|
28 |
-
if torch.cuda.is_available():
|
29 |
-
torch_dtype = torch.bfloat16
|
30 |
-
else:
|
31 |
-
torch_dtype = torch.float32
|
32 |
|
33 |
###
|
34 |
transformer = Lumina2Transformer2DModel.from_pretrained(transformer_repo_id, subfolder="transformer")
|
@@ -60,6 +57,9 @@ def infer(
|
|
60 |
height=1024,
|
61 |
guidance_scale=4.0,
|
62 |
num_inference_steps=30,
|
|
|
|
|
|
|
63 |
progress=gr.Progress(track_tqdm=True),
|
64 |
):
|
65 |
if randomize_seed:
|
@@ -75,6 +75,9 @@ def infer(
|
|
75 |
width=width,
|
76 |
height=height,
|
77 |
generator=generator,
|
|
|
|
|
|
|
78 |
).images[0]
|
79 |
|
80 |
return image, seed
|
@@ -98,7 +101,7 @@ with gr.Blocks(css=css) as demo:
|
|
98 |
prompt = gr.Text(
|
99 |
label="Prompt",
|
100 |
show_label=False,
|
101 |
-
max_lines=
|
102 |
placeholder="Enter your prompt",
|
103 |
container=False,
|
104 |
)
|
@@ -108,21 +111,29 @@ with gr.Blocks(css=css) as demo:
|
|
108 |
result = gr.Image(label="Result", show_label=False)
|
109 |
|
110 |
with gr.Accordion("Advanced Settings", open=False):
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
126 |
|
127 |
with gr.Row():
|
128 |
width = gr.Slider(
|
@@ -158,6 +169,22 @@ with gr.Blocks(css=css) as demo:
|
|
158 |
value=30,
|
159 |
)
|
160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True, cache_mode="lazy")
|
162 |
|
163 |
gr.on(
|
@@ -172,6 +199,9 @@ with gr.Blocks(css=css) as demo:
|
|
172 |
height,
|
173 |
guidance_scale,
|
174 |
num_inference_steps,
|
|
|
|
|
|
|
175 |
],
|
176 |
outputs=[result, seed],
|
177 |
)
|
|
|
21 |
GemmaTokenizer
|
22 |
)
|
23 |
|
24 |
+
default_system_prompt = "You are an assistant designed to generate superior images with the superior degree of image-text alignment based on textual prompts or user prompts."
|
25 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
26 |
model_repo_id = "Alpha-VLLM/Lumina-Image-2.0"
|
27 |
transformer_repo_id = "benjamin-paine/Lumina-Image-2.0" # Temporarily fixed, change when main repo gets updated
|
28 |
+
torch_dtype = torch.float32
|
|
|
|
|
|
|
|
|
29 |
|
30 |
###
|
31 |
transformer = Lumina2Transformer2DModel.from_pretrained(transformer_repo_id, subfolder="transformer")
|
|
|
57 |
height=1024,
|
58 |
guidance_scale=4.0,
|
59 |
num_inference_steps=30,
|
60 |
+
system_prompt=default_system_prompt,
|
61 |
+
cfg_normalization=True,
|
62 |
+
cfg_trunc_ratio=1.0,
|
63 |
progress=gr.Progress(track_tqdm=True),
|
64 |
):
|
65 |
if randomize_seed:
|
|
|
75 |
width=width,
|
76 |
height=height,
|
77 |
generator=generator,
|
78 |
+
system_prompt=system_prompt,
|
79 |
+
cfg_normalization=cfg_normalization,
|
80 |
+
cfg_trunc_ratio=cfg_trunc_ratio
|
81 |
).images[0]
|
82 |
|
83 |
return image, seed
|
|
|
101 |
prompt = gr.Text(
|
102 |
label="Prompt",
|
103 |
show_label=False,
|
104 |
+
max_lines=4,
|
105 |
placeholder="Enter your prompt",
|
106 |
container=False,
|
107 |
)
|
|
|
111 |
result = gr.Image(label="Result", show_label=False)
|
112 |
|
113 |
with gr.Accordion("Advanced Settings", open=False):
|
114 |
+
with gr.Row():
|
115 |
+
system_prompt = gr.Text(
|
116 |
+
label="System Prompt",
|
117 |
+
max_lines=4,
|
118 |
+
value=default_system_prompt
|
119 |
+
)
|
120 |
+
|
121 |
+
negative_prompt = gr.Text(
|
122 |
+
label="Negative prompt",
|
123 |
+
max_lines=4,
|
124 |
+
placeholder="Enter a negative prompt",
|
125 |
+
)
|
126 |
|
127 |
+
with gr.Row():
|
128 |
+
seed = gr.Slider(
|
129 |
+
label="Seed",
|
130 |
+
minimum=0,
|
131 |
+
maximum=MAX_SEED,
|
132 |
+
step=1,
|
133 |
+
value=0,
|
134 |
+
)
|
135 |
+
|
136 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
137 |
|
138 |
with gr.Row():
|
139 |
width = gr.Slider(
|
|
|
169 |
value=30,
|
170 |
)
|
171 |
|
172 |
+
with gr.Row():
|
173 |
+
cfg_normalization = gr.Checkbox(
|
174 |
+
label="CFG Normalization",
|
175 |
+
value=True
|
176 |
+
)
|
177 |
+
cfg_trunc_ratio = gr.Slider(
|
178 |
+
label="CFG Truncation Ratio",
|
179 |
+
minimum=0.0,
|
180 |
+
maximum=1.0,
|
181 |
+
step=0.01,
|
182 |
+
value=1.0
|
183 |
+
)
|
184 |
+
|
185 |
+
with gr.Row():
|
186 |
+
|
187 |
+
|
188 |
gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True, cache_mode="lazy")
|
189 |
|
190 |
gr.on(
|
|
|
199 |
height,
|
200 |
guidance_scale,
|
201 |
num_inference_steps,
|
202 |
+
system_prompt,
|
203 |
+
cfg_normalization,
|
204 |
+
cfg_trunc_ratio,
|
205 |
],
|
206 |
outputs=[result, seed],
|
207 |
)
|