|
import spaces |
|
import argparse |
|
import os |
|
import time |
|
from os import path |
|
from safetensors.torch import load_file |
|
from huggingface_hub import hf_hub_download |
|
|
|
cache_path = path.join(path.dirname(path.abspath(__file__)), "models") |
|
os.environ["TRANSFORMERS_CACHE"] = cache_path |
|
os.environ["HF_HUB_CACHE"] = cache_path |
|
os.environ["HF_HOME"] = cache_path |
|
|
|
import gradio as gr |
|
import torch |
|
from diffusers import FluxPipeline |
|
|
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
class timer: |
|
def __init__(self, method_name="timed process"): |
|
self.method = method_name |
|
|
|
def __enter__(self): |
|
self.start = time.time() |
|
print(f"{self.method} starts") |
|
|
|
def __exit__(self, exc_type, exc_val, exc_tb): |
|
end = time.time() |
|
print(f"{self.method} took {str(round(end - self.start, 2))}s") |
|
|
|
if not path.exists(cache_path): |
|
os.makedirs(cache_path, exist_ok=True) |
|
|
|
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) |
|
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors")) |
|
pipe.fuse_lora(lora_scale=0.125) |
|
pipe.to(device="cuda", dtype=torch.bfloat16) |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Column(): |
|
with gr.Row(): |
|
with gr.Column(): |
|
num_images = gr.Slider(label="Number of Images", minimum=1, maximum=8, step=1, value=4, interactive=True) |
|
height = gr.Number(label="Image Height", value=1024, interactive=True) |
|
width = gr.Number(label="Image Width", value=1024, interactive=True) |
|
|
|
|
|
prompt = gr.Text(label="Prompt", value="a photo of a cat", interactive=True) |
|
seed = gr.Number(label="Seed", value=3413, interactive=True) |
|
btn = gr.Button(value="run") |
|
with gr.Column(): |
|
output = gr.Gallery(height=1024) |
|
|
|
@spaces.GPU |
|
def process_image(num_images, height, width, prompt, seed): |
|
global pipe |
|
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"): |
|
return pipe( |
|
prompt=[prompt]*num_images, |
|
generator=torch.Generator().manual_seed(int(seed)), |
|
num_inference_steps=8, |
|
guidance_scale=3.5, |
|
height=int(height), |
|
width=int(width) |
|
).images |
|
|
|
reactive_controls = [num_images, height, width, prompt, seed] |
|
|
|
|
|
|
|
|
|
btn.click(process_image, inputs=reactive_controls, outputs=[output]) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |