ljsabc's picture
Initial commit.
395d300
raw
history blame
36 kB
import os.path as osp
import numpy as np
from typing import List, Optional, Sequence, Tuple, Union
import copy
from time import time
import mmcv
from mmcv.transforms import to_tensor
from mmdet.datasets.transforms import LoadAnnotations, RandomCrop, PackDetInputs, Mosaic, CachedMosaic, CachedMixUp, FilterAnnotations
from mmdet.structures.mask import BitmapMasks, PolygonMasks
from mmdet.datasets import CocoDataset
from mmdet.registry import DATASETS, TRANSFORMS
from numpy import random
from mmdet.structures.bbox import autocast_box_type, BaseBoxes
from mmengine.structures import InstanceData, PixelData
from mmdet.structures import DetDataSample
from utils.io_utils import bbox_overlap_xy
from utils.logger import LOGGER
@DATASETS.register_module()
class AnimeMangaMixedDataset(CocoDataset):
def __init__(self, animeins_root: str = None, animeins_annfile: str = None, manga109_annfile: str = None, manga109_root: str = None, *args, **kwargs) -> None:
self.animeins_annfile = animeins_annfile
self.animeins_root = animeins_root
self.manga109_annfile = manga109_annfile
self.manga109_root = manga109_root
self.cat_ids = []
self.cat_img_map = {}
super().__init__(*args, **kwargs)
LOGGER.info(f'total num data: {len(self.data_list)}')
def parse_data_info(self, raw_data_info: dict, data_prefix: str) -> Union[dict, List[dict]]:
"""Parse raw annotation to target format.
Args:
raw_data_info (dict): Raw data information load from ``ann_file``
Returns:
Union[dict, List[dict]]: Parsed annotation.
"""
img_info = raw_data_info['raw_img_info']
ann_info = raw_data_info['raw_ann_info']
data_info = {}
# TODO: need to change data_prefix['img'] to data_prefix['img_path']
img_path = osp.join(data_prefix, img_info['file_name'])
if self.data_prefix.get('seg', None):
seg_map_path = osp.join(
self.data_prefix['seg'],
img_info['file_name'].rsplit('.', 1)[0] + self.seg_map_suffix)
else:
seg_map_path = None
data_info['img_path'] = img_path
data_info['img_id'] = img_info['img_id']
data_info['seg_map_path'] = seg_map_path
data_info['height'] = img_info['height']
data_info['width'] = img_info['width']
instances = []
for i, ann in enumerate(ann_info):
instance = {}
if ann.get('ignore', False):
continue
x1, y1, w, h = ann['bbox']
inter_w = max(0, min(x1 + w, img_info['width']) - max(x1, 0))
inter_h = max(0, min(y1 + h, img_info['height']) - max(y1, 0))
if inter_w * inter_h == 0:
continue
if ann['area'] <= 0 or w < 1 or h < 1:
continue
if ann['category_id'] not in self.cat_ids:
continue
bbox = [x1, y1, x1 + w, y1 + h]
if ann.get('iscrowd', False):
instance['ignore_flag'] = 1
else:
instance['ignore_flag'] = 0
instance['bbox'] = bbox
instance['bbox_label'] = self.cat2label[ann['category_id']]
if ann.get('segmentation', None):
instance['mask'] = ann['segmentation']
instances.append(instance)
data_info['instances'] = instances
return data_info
def load_data_list(self) -> List[dict]:
data_lst = []
if self.manga109_root is not None:
data_lst += self._data_list(self.manga109_annfile, osp.join(self.manga109_root, 'images'))
# if len(data_lst) > 8000:
# data_lst = data_lst[:500]
LOGGER.info(f'num data from manga109: {len(data_lst)}')
if self.animeins_root is not None:
animeins_annfile = osp.join(self.animeins_root, self.animeins_annfile)
data_prefix = osp.join(self.animeins_root, self.data_prefix['img'])
anime_lst = self._data_list(animeins_annfile, data_prefix)
# if len(anime_lst) > 8000:
# anime_lst = anime_lst[:500]
data_lst += anime_lst
LOGGER.info(f'num data from animeins: {len(data_lst)}')
return data_lst
def _data_list(self, annfile: str, data_prefix: str) -> List[dict]:
"""Load annotations from an annotation file named as ``ann_file``
Returns:
List[dict]: A list of annotation.
""" # noqa: E501
with self.file_client.get_local_path(annfile) as local_path:
self.coco = self.COCOAPI(local_path)
# The order of returned `cat_ids` will not
# change with the order of the `classes`
self.cat_ids = self.coco.get_cat_ids(
cat_names=self.metainfo['classes'])
self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)}
cat_img_map = copy.deepcopy(self.coco.cat_img_map)
for key, val in cat_img_map.items():
if key in self.cat_img_map:
self.cat_img_map[key] += val
else:
self.cat_img_map[key] = val
img_ids = self.coco.get_img_ids()
data_list = []
total_ann_ids = []
for img_id in img_ids:
raw_img_info = self.coco.load_imgs([img_id])[0]
raw_img_info['img_id'] = img_id
ann_ids = self.coco.get_ann_ids(img_ids=[img_id])
raw_ann_info = self.coco.load_anns(ann_ids)
total_ann_ids.extend(ann_ids)
parsed_data_info = self.parse_data_info({
'raw_ann_info':
raw_ann_info,
'raw_img_info':
raw_img_info
}, data_prefix)
data_list.append(parsed_data_info)
if self.ANN_ID_UNIQUE:
assert len(set(total_ann_ids)) == len(
total_ann_ids
), f"Annotation ids in '{annfile}' are not unique!"
del self.coco
return data_list
@TRANSFORMS.register_module()
class LoadAnnotationsNoSegs(LoadAnnotations):
def _process_masks(self, results: dict) -> list:
"""Process gt_masks and filter invalid polygons.
Args:
results (dict): Result dict from :obj:``mmengine.BaseDataset``.
Returns:
list: Processed gt_masks.
"""
gt_masks = []
gt_ignore_flags = []
gt_ignore_mask_flags = []
for instance in results.get('instances', []):
gt_mask = instance['mask']
ignore_mask = False
# If the annotation of segmentation mask is invalid,
# ignore the whole instance.
if isinstance(gt_mask, list):
gt_mask = [
np.array(polygon) for polygon in gt_mask
if len(polygon) % 2 == 0 and len(polygon) >= 6
]
if len(gt_mask) == 0:
# ignore this instance and set gt_mask to a fake mask
instance['ignore_flag'] = 1
gt_mask = [np.zeros(6)]
elif not self.poly2mask:
# `PolygonMasks` requires a ploygon of format List[np.array],
# other formats are invalid.
instance['ignore_flag'] = 1
gt_mask = [np.zeros(6)]
elif isinstance(gt_mask, dict) and \
not (gt_mask.get('counts') is not None and
gt_mask.get('size') is not None and
isinstance(gt_mask['counts'], (list, str))):
# if gt_mask is a dict, it should include `counts` and `size`,
# so that `BitmapMasks` can uncompressed RLE
# instance['ignore_flag'] = 1
ignore_mask = True
gt_mask = [np.zeros(6)]
gt_masks.append(gt_mask)
# re-process gt_ignore_flags
gt_ignore_flags.append(instance['ignore_flag'])
gt_ignore_mask_flags.append(ignore_mask)
results['gt_ignore_flags'] = np.array(gt_ignore_flags, dtype=bool)
results['gt_ignore_mask_flags'] = np.array(gt_ignore_mask_flags, dtype=bool)
return gt_masks
def _load_masks(self, results: dict) -> None:
"""Private function to load mask annotations.
Args:
results (dict): Result dict from :obj:``mmengine.BaseDataset``.
"""
h, w = results['ori_shape']
gt_masks = self._process_masks(results)
if self.poly2mask:
p2masks = []
if len(gt_masks) > 0:
for ins, mask, ignore_mask in zip(results['instances'], gt_masks, results['gt_ignore_mask_flags']):
bbox = [int(c) for c in ins['bbox']]
if ignore_mask:
m = np.zeros((h, w), dtype=np.uint8)
m[bbox[1]:bbox[3], bbox[0]: bbox[2]] = 255
# m[bbox[1]:bbox[3], bbox[0]: bbox[2]]
p2masks.append(m)
else:
p2masks.append(self._poly2mask(mask, h, w))
# import cv2
# # cv2.imwrite('tmp_mask.png', p2masks[-1] * 255)
# cv2.imwrite('tmp_img.png', results['img'])
# cv2.imwrite('tmp_bbox.png', m * 225)
# print(p2masks[-1].shape, p2masks[-1].dtype)
gt_masks = BitmapMasks(p2masks, h, w)
else:
# fake polygon masks will be ignored in `PackDetInputs`
gt_masks = PolygonMasks([mask for mask in gt_masks], h, w)
results['gt_masks'] = gt_masks
def transform(self, results: dict) -> dict:
"""Function to load multiple types annotations.
Args:
results (dict): Result dict from :obj:``mmengine.BaseDataset``.
Returns:
dict: The dict contains loaded bounding box, label and
semantic segmentation.
"""
if self.with_bbox:
self._load_bboxes(results)
if self.with_label:
self._load_labels(results)
if self.with_mask:
self._load_masks(results)
if self.with_seg:
self._load_seg_map(results)
return results
@TRANSFORMS.register_module()
class PackDetIputsNoSeg(PackDetInputs):
mapping_table = {
'gt_bboxes': 'bboxes',
'gt_bboxes_labels': 'labels',
'gt_ignore_mask_flags': 'ignore_mask',
'gt_masks': 'masks'
}
def transform(self, results: dict) -> dict:
"""Method to pack the input data.
Args:
results (dict): Result dict from the data pipeline.
Returns:
dict:
- 'inputs' (obj:`torch.Tensor`): The forward data of models.
- 'data_sample' (obj:`DetDataSample`): The annotation info of the
sample.
"""
packed_results = dict()
if 'img' in results:
img = results['img']
if len(img.shape) < 3:
img = np.expand_dims(img, -1)
img = np.ascontiguousarray(img.transpose(2, 0, 1))
packed_results['inputs'] = to_tensor(img)
if 'gt_ignore_flags' in results:
valid_idx = np.where(results['gt_ignore_flags'] == 0)[0]
ignore_idx = np.where(results['gt_ignore_flags'] == 1)[0]
data_sample = DetDataSample()
instance_data = InstanceData()
ignore_instance_data = InstanceData()
for key in self.mapping_table.keys():
if key not in results:
continue
if key == 'gt_masks' or isinstance(results[key], BaseBoxes):
if 'gt_ignore_flags' in results:
instance_data[
self.mapping_table[key]] = results[key][valid_idx]
ignore_instance_data[
self.mapping_table[key]] = results[key][ignore_idx]
else:
instance_data[self.mapping_table[key]] = results[key]
else:
if 'gt_ignore_flags' in results:
instance_data[self.mapping_table[key]] = to_tensor(
results[key][valid_idx])
ignore_instance_data[self.mapping_table[key]] = to_tensor(
results[key][ignore_idx])
else:
instance_data[self.mapping_table[key]] = to_tensor(
results[key])
data_sample.gt_instances = instance_data
data_sample.ignored_instances = ignore_instance_data
if 'proposals' in results:
proposals = InstanceData(
bboxes=to_tensor(results['proposals']),
scores=to_tensor(results['proposals_scores']))
data_sample.proposals = proposals
if 'gt_seg_map' in results:
gt_sem_seg_data = dict(
sem_seg=to_tensor(results['gt_seg_map'][None, ...].copy()))
data_sample.gt_sem_seg = PixelData(**gt_sem_seg_data)
img_meta = {}
for key in self.meta_keys:
assert key in results, f'`{key}` is not found in `results`, ' \
f'the valid keys are {list(results)}.'
img_meta[key] = results[key]
data_sample.set_metainfo(img_meta)
packed_results['data_samples'] = data_sample
return packed_results
def translate_bitmapmask(bitmap_masks: BitmapMasks,
out_shape,
offset_x,
offset_y,):
if len(bitmap_masks.masks) == 0:
translated_masks = np.empty((0, *out_shape), dtype=np.uint8)
else:
masks = bitmap_masks.masks
out_h, out_w = out_shape
mask_h, mask_w = masks.shape[1:]
translated_masks = np.zeros((masks.shape[0], *out_shape),
dtype=masks.dtype)
ix, iy = bbox_overlap_xy([0, 0, out_w, out_h], [offset_x, offset_y, mask_w, mask_h])
if ix > 2 and iy > 2:
if offset_x > 0:
mx1 = 0
tx1 = offset_x
else:
mx1 = -offset_x
tx1 = 0
mx2 = min(out_w - offset_x, mask_w)
tx2 = tx1 + mx2 - mx1
if offset_y > 0:
my1 = 0
ty1 = offset_y
else:
my1 = -offset_y
ty1 = 0
my2 = min(out_h - offset_y, mask_h)
ty2 = ty1 + my2 - my1
translated_masks[:, ty1: ty2, tx1: tx2] = \
masks[:, my1: my2, mx1: mx2]
return BitmapMasks(translated_masks, *out_shape)
@TRANSFORMS.register_module()
class CachedMosaicNoSeg(CachedMosaic):
@autocast_box_type()
def transform(self, results: dict) -> dict:
"""Mosaic transform function.
Args:
results (dict): Result dict.
Returns:
dict: Updated result dict.
"""
# cache and pop images
self.results_cache.append(copy.deepcopy(results))
if len(self.results_cache) > self.max_cached_images:
if self.random_pop:
index = random.randint(0, len(self.results_cache) - 1)
else:
index = 0
self.results_cache.pop(index)
if len(self.results_cache) <= 4:
return results
if random.uniform(0, 1) > self.prob:
return results
indices = self.get_indexes(self.results_cache)
mix_results = [copy.deepcopy(self.results_cache[i]) for i in indices]
# TODO: refactor mosaic to reuse these code.
mosaic_bboxes = []
mosaic_bboxes_labels = []
mosaic_ignore_flags = []
mosaic_masks = []
mosaic_ignore_mask_flags = []
with_mask = True if 'gt_masks' in results else False
if len(results['img'].shape) == 3:
mosaic_img = np.full(
(int(self.img_scale[1] * 2), int(self.img_scale[0] * 2), 3),
self.pad_val,
dtype=results['img'].dtype)
else:
mosaic_img = np.full(
(int(self.img_scale[1] * 2), int(self.img_scale[0] * 2)),
self.pad_val,
dtype=results['img'].dtype)
# mosaic center x, y
center_x = int(
random.uniform(*self.center_ratio_range) * self.img_scale[0])
center_y = int(
random.uniform(*self.center_ratio_range) * self.img_scale[1])
center_position = (center_x, center_y)
loc_strs = ('top_left', 'top_right', 'bottom_left', 'bottom_right')
n_manga = 0
for i, loc in enumerate(loc_strs):
if loc == 'top_left':
results_patch = copy.deepcopy(results)
else:
results_patch = copy.deepcopy(mix_results[i - 1])
is_manga = results_patch['img_id'] > 900000000
if is_manga:
n_manga += 1
if n_manga > 3:
continue
im_h, im_w = results_patch['img'].shape[:2]
if im_w > im_h and random.random() < 0.75:
results_patch = hcrop(results_patch, (im_h, im_w // 2), True)
img_i = results_patch['img']
h_i, w_i = img_i.shape[:2]
# keep_ratio resize
scale_ratio_i = min(self.img_scale[1] / h_i,
self.img_scale[0] / w_i)
img_i = mmcv.imresize(
img_i, (int(w_i * scale_ratio_i), int(h_i * scale_ratio_i)))
# compute the combine parameters
paste_coord, crop_coord = self._mosaic_combine(
loc, center_position, img_i.shape[:2][::-1])
x1_p, y1_p, x2_p, y2_p = paste_coord
x1_c, y1_c, x2_c, y2_c = crop_coord
# crop and paste image
mosaic_img[y1_p:y2_p, x1_p:x2_p] = img_i[y1_c:y2_c, x1_c:x2_c]
# adjust coordinate
gt_bboxes_i = results_patch['gt_bboxes']
gt_bboxes_labels_i = results_patch['gt_bboxes_labels']
gt_ignore_flags_i = results_patch['gt_ignore_flags']
gt_ignore_mask_i = results_patch['gt_ignore_mask_flags']
padw = x1_p - x1_c
padh = y1_p - y1_c
gt_bboxes_i.rescale_([scale_ratio_i, scale_ratio_i])
gt_bboxes_i.translate_([padw, padh])
mosaic_bboxes.append(gt_bboxes_i)
mosaic_bboxes_labels.append(gt_bboxes_labels_i)
mosaic_ignore_flags.append(gt_ignore_flags_i)
mosaic_ignore_mask_flags.append(gt_ignore_mask_i)
if with_mask and results_patch.get('gt_masks', None) is not None:
gt_masks_i = results_patch['gt_masks']
gt_masks_i = gt_masks_i.rescale(float(scale_ratio_i))
gt_masks_i = translate_bitmapmask(gt_masks_i,
out_shape=(int(self.img_scale[0] * 2),
int(self.img_scale[1] * 2)),
offset_x=padw, offset_y=padh)
# gt_masks_i = gt_masks_i.translate(
# out_shape=(int(self.img_scale[0] * 2),
# int(self.img_scale[1] * 2)),
# offset=padw,
# direction='horizontal')
# gt_masks_i = gt_masks_i.translate(
# out_shape=(int(self.img_scale[0] * 2),
# int(self.img_scale[1] * 2)),
# offset=padh,
# direction='vertical')
mosaic_masks.append(gt_masks_i)
mosaic_bboxes = mosaic_bboxes[0].cat(mosaic_bboxes, 0)
mosaic_bboxes_labels = np.concatenate(mosaic_bboxes_labels, 0)
mosaic_ignore_flags = np.concatenate(mosaic_ignore_flags, 0)
mosaic_ignore_mask_flags = np.concatenate(mosaic_ignore_mask_flags, 0)
if self.bbox_clip_border:
mosaic_bboxes.clip_([2 * self.img_scale[1], 2 * self.img_scale[0]])
# remove outside bboxes
inside_inds = mosaic_bboxes.is_inside(
[2 * self.img_scale[1], 2 * self.img_scale[0]]).numpy()
mosaic_bboxes = mosaic_bboxes[inside_inds]
mosaic_bboxes_labels = mosaic_bboxes_labels[inside_inds]
mosaic_ignore_flags = mosaic_ignore_flags[inside_inds]
mosaic_ignore_mask_flags = mosaic_ignore_mask_flags[inside_inds]
results['img'] = mosaic_img
results['img_shape'] = mosaic_img.shape
results['gt_bboxes'] = mosaic_bboxes
results['gt_bboxes_labels'] = mosaic_bboxes_labels
results['gt_ignore_flags'] = mosaic_ignore_flags
results['gt_ignore_mask_flags'] = mosaic_ignore_mask_flags
if with_mask:
total_instances = len(inside_inds)
assert total_instances == np.array([m.masks.shape[0] for m in mosaic_masks]).sum()
if total_instances > 10:
masks = np.empty((inside_inds.sum(), mosaic_masks[0].height, mosaic_masks[0].width), dtype=np.uint8)
msk_idx = 0
mmsk_idx = 0
for m in mosaic_masks:
for ii in range(m.masks.shape[0]):
if inside_inds[msk_idx]:
masks[mmsk_idx] = m.masks[ii]
mmsk_idx += 1
msk_idx += 1
results['gt_masks'] = BitmapMasks(masks, mosaic_masks[0].height, mosaic_masks[0].width)
else:
mosaic_masks = mosaic_masks[0].cat(mosaic_masks)
results['gt_masks'] = mosaic_masks[inside_inds]
# assert np.all(results['gt_masks'].masks == masks) and results['gt_masks'].masks.shape == masks.shape
# assert inside_inds.sum() == results['gt_masks'].masks.shape[0]
return results
@TRANSFORMS.register_module()
class FilterAnnotationsNoSeg(FilterAnnotations):
def __init__(self,
min_gt_bbox_wh: Tuple[int, int] = (1, 1),
min_gt_mask_area: int = 1,
by_box: bool = True,
by_mask: bool = False,
keep_empty: bool = True) -> None:
# TODO: add more filter options
assert by_box or by_mask
self.min_gt_bbox_wh = min_gt_bbox_wh
self.min_gt_mask_area = min_gt_mask_area
self.by_box = by_box
self.by_mask = by_mask
self.keep_empty = keep_empty
@autocast_box_type()
def transform(self, results: dict) -> Union[dict, None]:
"""Transform function to filter annotations.
Args:
results (dict): Result dict.
Returns:
dict: Updated result dict.
"""
assert 'gt_bboxes' in results
gt_bboxes = results['gt_bboxes']
if gt_bboxes.shape[0] == 0:
return results
tests = []
if self.by_box:
tests.append(
((gt_bboxes.widths > self.min_gt_bbox_wh[0]) &
(gt_bboxes.heights > self.min_gt_bbox_wh[1])).numpy())
if self.by_mask:
assert 'gt_masks' in results
gt_masks = results['gt_masks']
tests.append(gt_masks.areas >= self.min_gt_mask_area)
keep = tests[0]
for t in tests[1:]:
keep = keep & t
# if not keep.any():
# if self.keep_empty:
# return None
assert len(results['gt_ignore_flags']) == len(results['gt_ignore_mask_flags'])
keys = ('gt_bboxes', 'gt_bboxes_labels', 'gt_masks', 'gt_ignore_flags', 'gt_ignore_mask_flags')
for key in keys:
if key in results:
try:
results[key] = results[key][keep]
except Exception as e:
raise e
return results
def hcrop(results: dict, crop_size: Tuple[int, int],
allow_negative_crop: bool) -> Union[dict, None]:
assert crop_size[0] > 0 and crop_size[1] > 0
img = results['img']
offset_h, offset_w = 0, random.choice([0, crop_size[1]])
crop_y1, crop_y2 = offset_h, offset_h + crop_size[0]
crop_x1, crop_x2 = offset_w, offset_w + crop_size[1]
# Record the homography matrix for the RandomCrop
homography_matrix = np.array(
[[1, 0, -offset_w], [0, 1, -offset_h], [0, 0, 1]],
dtype=np.float32)
if results.get('homography_matrix', None) is None:
results['homography_matrix'] = homography_matrix
else:
results['homography_matrix'] = homography_matrix @ results[
'homography_matrix']
# crop the image
img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...]
img_shape = img.shape
results['img'] = img
results['img_shape'] = img_shape
# crop bboxes accordingly and clip to the image boundary
if results.get('gt_bboxes', None) is not None:
bboxes = results['gt_bboxes']
bboxes.translate_([-offset_w, -offset_h])
bboxes.clip_(img_shape[:2])
valid_inds = bboxes.is_inside(img_shape[:2]).numpy()
# If the crop does not contain any gt-bbox area and
# allow_negative_crop is False, skip this image.
if (not valid_inds.any() and not allow_negative_crop):
return None
results['gt_bboxes'] = bboxes[valid_inds]
if results.get('gt_ignore_flags', None) is not None:
results['gt_ignore_flags'] = \
results['gt_ignore_flags'][valid_inds]
if results.get('gt_ignore_mask_flags', None) is not None:
results['gt_ignore_mask_flags'] = \
results['gt_ignore_mask_flags'][valid_inds]
if results.get('gt_bboxes_labels', None) is not None:
results['gt_bboxes_labels'] = \
results['gt_bboxes_labels'][valid_inds]
if results.get('gt_masks', None) is not None:
results['gt_masks'] = results['gt_masks'][
valid_inds.nonzero()[0]].crop(
np.asarray([crop_x1, crop_y1, crop_x2, crop_y2]))
results['gt_bboxes'] = results['gt_masks'].get_bboxes(
type(results['gt_bboxes']))
# crop semantic seg
if results.get('gt_seg_map', None) is not None:
results['gt_seg_map'] = results['gt_seg_map'][crop_y1:crop_y2,
crop_x1:crop_x2]
return results
@TRANSFORMS.register_module()
class RandomCropNoSeg(RandomCrop):
def _crop_data(self, results: dict, crop_size: Tuple[int, int],
allow_negative_crop: bool) -> Union[dict, None]:
assert crop_size[0] > 0 and crop_size[1] > 0
img = results['img']
margin_h = max(img.shape[0] - crop_size[0], 0)
margin_w = max(img.shape[1] - crop_size[1], 0)
offset_h, offset_w = self._rand_offset((margin_h, margin_w))
crop_y1, crop_y2 = offset_h, offset_h + crop_size[0]
crop_x1, crop_x2 = offset_w, offset_w + crop_size[1]
# Record the homography matrix for the RandomCrop
homography_matrix = np.array(
[[1, 0, -offset_w], [0, 1, -offset_h], [0, 0, 1]],
dtype=np.float32)
if results.get('homography_matrix', None) is None:
results['homography_matrix'] = homography_matrix
else:
results['homography_matrix'] = homography_matrix @ results[
'homography_matrix']
# crop the image
img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...]
img_shape = img.shape
results['img'] = img
results['img_shape'] = img_shape
# crop bboxes accordingly and clip to the image boundary
if results.get('gt_bboxes', None) is not None:
bboxes = results['gt_bboxes']
bboxes.translate_([-offset_w, -offset_h])
if self.bbox_clip_border:
bboxes.clip_(img_shape[:2])
valid_inds = bboxes.is_inside(img_shape[:2]).numpy()
# If the crop does not contain any gt-bbox area and
# allow_negative_crop is False, skip this image.
if (not valid_inds.any() and not allow_negative_crop):
return None
results['gt_bboxes'] = bboxes[valid_inds]
if results.get('gt_ignore_flags', None) is not None:
results['gt_ignore_flags'] = \
results['gt_ignore_flags'][valid_inds]
if results.get('gt_ignore_mask_flags', None) is not None:
results['gt_ignore_mask_flags'] = \
results['gt_ignore_mask_flags'][valid_inds]
if results.get('gt_bboxes_labels', None) is not None:
results['gt_bboxes_labels'] = \
results['gt_bboxes_labels'][valid_inds]
if results.get('gt_masks', None) is not None:
results['gt_masks'] = results['gt_masks'][
valid_inds.nonzero()[0]].crop(
np.asarray([crop_x1, crop_y1, crop_x2, crop_y2]))
if self.recompute_bbox:
results['gt_bboxes'] = results['gt_masks'].get_bboxes(
type(results['gt_bboxes']))
# crop semantic seg
if results.get('gt_seg_map', None) is not None:
results['gt_seg_map'] = results['gt_seg_map'][crop_y1:crop_y2,
crop_x1:crop_x2]
return results
@TRANSFORMS.register_module()
class CachedMixUpNoSeg(CachedMixUp):
@autocast_box_type()
def transform(self, results: dict) -> dict:
"""MixUp transform function.
Args:
results (dict): Result dict.
Returns:
dict: Updated result dict.
"""
# cache and pop images
self.results_cache.append(copy.deepcopy(results))
if len(self.results_cache) > self.max_cached_images:
if self.random_pop:
index = random.randint(0, len(self.results_cache) - 1)
else:
index = 0
self.results_cache.pop(index)
if len(self.results_cache) <= 1:
return results
if random.uniform(0, 1) > self.prob:
return results
index = self.get_indexes(self.results_cache)
retrieve_results = copy.deepcopy(self.results_cache[index])
# TODO: refactor mixup to reuse these code.
if retrieve_results['gt_bboxes'].shape[0] == 0:
# empty bbox
return results
retrieve_img = retrieve_results['img']
with_mask = True if 'gt_masks' in results else False
jit_factor = random.uniform(*self.ratio_range)
is_filp = random.uniform(0, 1) > self.flip_ratio
if len(retrieve_img.shape) == 3:
out_img = np.ones(
(self.dynamic_scale[1], self.dynamic_scale[0], 3),
dtype=retrieve_img.dtype) * self.pad_val
else:
out_img = np.ones(
self.dynamic_scale[::-1],
dtype=retrieve_img.dtype) * self.pad_val
# 1. keep_ratio resize
scale_ratio = min(self.dynamic_scale[1] / retrieve_img.shape[0],
self.dynamic_scale[0] / retrieve_img.shape[1])
retrieve_img = mmcv.imresize(
retrieve_img, (int(retrieve_img.shape[1] * scale_ratio),
int(retrieve_img.shape[0] * scale_ratio)))
# 2. paste
out_img[:retrieve_img.shape[0], :retrieve_img.shape[1]] = retrieve_img
# 3. scale jit
scale_ratio *= jit_factor
out_img = mmcv.imresize(out_img, (int(out_img.shape[1] * jit_factor),
int(out_img.shape[0] * jit_factor)))
# 4. flip
if is_filp:
out_img = out_img[:, ::-1, :]
# 5. random crop
ori_img = results['img']
origin_h, origin_w = out_img.shape[:2]
target_h, target_w = ori_img.shape[:2]
padded_img = np.ones((max(origin_h, target_h), max(
origin_w, target_w), 3)) * self.pad_val
padded_img = padded_img.astype(np.uint8)
padded_img[:origin_h, :origin_w] = out_img
x_offset, y_offset = 0, 0
if padded_img.shape[0] > target_h:
y_offset = random.randint(0, padded_img.shape[0] - target_h)
if padded_img.shape[1] > target_w:
x_offset = random.randint(0, padded_img.shape[1] - target_w)
padded_cropped_img = padded_img[y_offset:y_offset + target_h,
x_offset:x_offset + target_w]
# 6. adjust bbox
retrieve_gt_bboxes = retrieve_results['gt_bboxes']
retrieve_gt_bboxes.rescale_([scale_ratio, scale_ratio])
if with_mask:
retrieve_gt_masks = retrieve_results['gt_masks'].rescale(
scale_ratio)
if self.bbox_clip_border:
retrieve_gt_bboxes.clip_([origin_h, origin_w])
if is_filp:
retrieve_gt_bboxes.flip_([origin_h, origin_w],
direction='horizontal')
if with_mask:
retrieve_gt_masks = retrieve_gt_masks.flip()
# 7. filter
cp_retrieve_gt_bboxes = retrieve_gt_bboxes.clone()
cp_retrieve_gt_bboxes.translate_([-x_offset, -y_offset])
if with_mask:
retrieve_gt_masks = translate_bitmapmask(retrieve_gt_masks,
out_shape=(target_h, target_w),
offset_x=-x_offset, offset_y=-y_offset)
# retrieve_gt_masks = retrieve_gt_masks.translate(
# out_shape=(target_h, target_w),
# offset=-x_offset,
# direction='horizontal')
# retrieve_gt_masks = retrieve_gt_masks.translate(
# out_shape=(target_h, target_w),
# offset=-y_offset,
# direction='vertical')
if self.bbox_clip_border:
cp_retrieve_gt_bboxes.clip_([target_h, target_w])
# 8. mix up
ori_img = ori_img.astype(np.float32)
mixup_img = 0.5 * ori_img + 0.5 * padded_cropped_img.astype(np.float32)
retrieve_gt_bboxes_labels = retrieve_results['gt_bboxes_labels']
retrieve_gt_ignore_flags = retrieve_results['gt_ignore_flags']
retrieve_gt_ignore_mask_flags = retrieve_results['gt_ignore_mask_flags']
mixup_gt_bboxes = cp_retrieve_gt_bboxes.cat(
(results['gt_bboxes'], cp_retrieve_gt_bboxes), dim=0)
mixup_gt_bboxes_labels = np.concatenate(
(results['gt_bboxes_labels'], retrieve_gt_bboxes_labels), axis=0)
mixup_gt_ignore_flags = np.concatenate(
(results['gt_ignore_flags'], retrieve_gt_ignore_flags), axis=0)
mixup_gt_ignore_mask_flags = np.concatenate(
(results['gt_ignore_mask_flags'], retrieve_gt_ignore_mask_flags), axis=0)
if with_mask:
mixup_gt_masks = retrieve_gt_masks.cat(
[results['gt_masks'], retrieve_gt_masks])
# remove outside bbox
inside_inds = mixup_gt_bboxes.is_inside([target_h, target_w]).numpy()
mixup_gt_bboxes = mixup_gt_bboxes[inside_inds]
mixup_gt_bboxes_labels = mixup_gt_bboxes_labels[inside_inds]
mixup_gt_ignore_flags = mixup_gt_ignore_flags[inside_inds]
mixup_gt_ignore_mask_flags = mixup_gt_ignore_mask_flags[inside_inds]
if with_mask:
mixup_gt_masks = mixup_gt_masks[inside_inds]
results['img'] = mixup_img.astype(np.uint8)
results['img_shape'] = mixup_img.shape
results['gt_bboxes'] = mixup_gt_bboxes
results['gt_bboxes_labels'] = mixup_gt_bboxes_labels
results['gt_ignore_flags'] = mixup_gt_ignore_flags
results['gt_ignore_mask_flags'] = mixup_gt_ignore_mask_flags
if with_mask:
results['gt_masks'] = mixup_gt_masks
return results