SliderSpace / utils /flux_utils.py
RohitGandikota's picture
adding utils for sliders
4cbd4f2 verified
raw
history blame
12.4 kB
import os , torch
import argparse
import copy
import gc
import itertools
import logging
import math
import random
import shutil
import warnings
from contextlib import nullcontext
from pathlib import Path
import numpy as np
import torch
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
from huggingface_hub import create_repo, upload_folder
from huggingface_hub.utils import insecure_hashlib
from PIL import Image
from PIL.ImageOps import exif_transpose
from torch.utils.data import Dataset
from torchvision import transforms
from torchvision.transforms.functional import crop
from tqdm.auto import tqdm
from transformers import CLIPTokenizer, PretrainedConfig, T5TokenizerFast
import diffusers
from diffusers import (
AutoencoderKL,
FlowMatchEulerDiscreteScheduler,
FluxTransformer2DModel,
)
from diffusers.optimization import get_scheduler
from diffusers.training_utils import (
_set_state_dict_into_text_encoder,
cast_training_params,
compute_density_for_timestep_sampling,
compute_loss_weighting_for_sd3,
)
from diffusers.utils import (
check_min_version,
convert_unet_state_dict_to_peft,
is_wandb_available,
)
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
from diffusers.utils.torch_utils import is_compiled_module
from collections import defaultdict
from typing import List, Optional
import argparse
import ast
from pathlib import Path
from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler
from huggingface_hub import hf_hub_download
import gc
import torch.nn.functional as F
import os
import torch
from tqdm.auto import tqdm
import time, datetime
import numpy as np
from torch.optim import AdamW
from contextlib import ExitStack
from safetensors.torch import load_file
import torch.nn as nn
import random
from transformers import CLIPModel
from transformers import logging
logging.set_verbosity_warning()
from diffusers import logging
logging.set_verbosity_error()
def flush():
torch.cuda.empty_cache()
gc.collect()
flush()
def unwrap_model(model):
options = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
#if is_deepspeed_available():
# options += (DeepSpeedEngine,)
while isinstance(model, options):
model = model.module
return model
# Function to log gradients
def log_gradients(named_parameters):
grad_dict = defaultdict(lambda: defaultdict(float))
for name, param in named_parameters:
if param.requires_grad and param.grad is not None:
grad_dict[name]['mean'] = param.grad.abs().mean().item()
grad_dict[name]['std'] = param.grad.std().item()
grad_dict[name]['max'] = param.grad.abs().max().item()
grad_dict[name]['min'] = param.grad.abs().min().item()
return grad_dict
def import_model_class_from_model_name_or_path(
pretrained_model_name_or_path: str, subfolder: str = "text_encoder",
):
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path, subfolder=subfolder
, device_map='cuda:0'
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModel":
from transformers import CLIPTextModel
return CLIPTextModel
elif model_class == "T5EncoderModel":
from transformers import T5EncoderModel
return T5EncoderModel
else:
raise ValueError(f"{model_class} is not supported.")
def load_text_encoders(pretrained_model_name_or_path, class_one, class_two, weight_dtype):
text_encoder_one = class_one.from_pretrained(
pretrained_model_name_or_path,
subfolder="text_encoder",
torch_dtype=weight_dtype,
device_map='cuda:0'
)
text_encoder_two = class_two.from_pretrained(
pretrained_model_name_or_path,
subfolder="text_encoder_2",
torch_dtype=weight_dtype,
device_map='cuda:0'
)
return text_encoder_one, text_encoder_two
import matplotlib.pyplot as plt
def plot_labeled_images(images, labels):
# Determine the number of images
n = len(images)
# Create a new figure with a single row
fig, axes = plt.subplots(1, n, figsize=(5*n, 5))
# If there's only one image, axes will be a single object, not an array
if n == 1:
axes = [axes]
# Plot each image
for i, (img, label) in enumerate(zip(images, labels)):
# Convert PIL image to numpy array
img_array = np.array(img)
# Display the image
axes[i].imshow(img_array)
axes[i].axis('off') # Turn off axis
# Set the title (label) for the image
axes[i].set_title(label)
# Adjust the layout and display the plot
plt.tight_layout()
plt.show()
def tokenize_prompt(tokenizer, prompt, max_sequence_length):
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
return_length=False,
return_overflowing_tokens=False,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
return text_input_ids
def _encode_prompt_with_t5(
text_encoder,
tokenizer,
max_sequence_length=512,
prompt=None,
num_images_per_prompt=1,
device=None,
text_input_ids=None,
):
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
if tokenizer is not None:
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
return_length=False,
return_overflowing_tokens=False,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
else:
if text_input_ids is None:
raise ValueError("text_input_ids must be provided when the tokenizer is not specified")
prompt_embeds = text_encoder(text_input_ids.to(device))[0]
dtype = text_encoder.dtype
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
_, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
return prompt_embeds
def _encode_prompt_with_clip(
text_encoder,
tokenizer,
prompt: str,
device=None,
text_input_ids=None,
num_images_per_prompt: int = 1,
):
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
if tokenizer is not None:
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=77,
truncation=True,
return_overflowing_tokens=False,
return_length=False,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
else:
if text_input_ids is None:
raise ValueError("text_input_ids must be provided when the tokenizer is not specified")
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=False)
# Use pooled output of CLIPTextModel
prompt_embeds = prompt_embeds.pooler_output
prompt_embeds = prompt_embeds.to(dtype=text_encoder.dtype, device=device)
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
return prompt_embeds
def encode_prompt(
text_encoders,
tokenizers,
prompt: str,
max_sequence_length,
device=None,
num_images_per_prompt: int = 1,
text_input_ids_list=None,
):
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
dtype = text_encoders[0].dtype
pooled_prompt_embeds = _encode_prompt_with_clip(
text_encoder=text_encoders[0],
tokenizer=tokenizers[0],
prompt=prompt,
device=device if device is not None else text_encoders[0].device,
num_images_per_prompt=num_images_per_prompt,
text_input_ids=text_input_ids_list[0] if text_input_ids_list else None,
)
prompt_embeds = _encode_prompt_with_t5(
text_encoder=text_encoders[1],
tokenizer=tokenizers[1],
max_sequence_length=max_sequence_length,
prompt=prompt,
num_images_per_prompt=num_images_per_prompt,
device=device if device is not None else text_encoders[1].device,
text_input_ids=text_input_ids_list[1] if text_input_ids_list else None,
)
text_ids = torch.zeros(batch_size, prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
text_ids = text_ids.repeat(num_images_per_prompt, 1, 1)
return prompt_embeds, pooled_prompt_embeds, text_ids
def compute_text_embeddings(prompt, text_encoders, tokenizers,max_sequence_length=256):
device = text_encoders[0].device
with torch.no_grad():
prompt_embeds, pooled_prompt_embeds, text_ids = encode_prompt(
text_encoders, tokenizers, prompt, max_sequence_length=max_sequence_length
)
prompt_embeds = prompt_embeds.to(device)
pooled_prompt_embeds = pooled_prompt_embeds.to(device)
text_ids = text_ids.to(device)
return prompt_embeds, pooled_prompt_embeds, text_ids
def get_sigmas(timesteps, n_dim=4, device='cuda:0', dtype=torch.bfloat16):
sigmas = noise_scheduler_copy.sigmas.to(device=device, dtype=dtype)
schedule_timesteps = noise_scheduler_copy.timesteps.to(device)
timesteps = timesteps.to(device)
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < n_dim:
sigma = sigma.unsqueeze(-1)
return sigma
def plot_history(history):
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 5))
ax1.plot(history['concept'])
ax1.set_title('Concept Loss')
ax2.plot(movingaverage(history['concept'], 10))
ax2.set_title('Moving Average Concept Loss')
plt.tight_layout()
plt.show()
def movingaverage(interval, window_size):
window = np.ones(int(window_size))/float(window_size)
return np.convolve(interval, window, 'same')
@torch.no_grad()
def get_noisy_image_flux(
image,
vae,
transformer,
scheduler,
timesteps_to=1000,
generator=None,
**kwargs,
):
"""
Gets noisy latents for a given image using Flux pipeline approach.
Args:
image: PIL image or tensor
vae: Flux VAE model
transformer: Flux transformer model
scheduler: Flux noise scheduler
timesteps_to: Target timestep
generator: Random generator for reproducibility
Returns:
tuple: (noisy_latents, noise)
"""
device = vae.device
vae_scale_factor = 2 ** (len(vae.config.block_out_channels) - 1)
image_processor = VaeImageProcessor(vae_scale_factor=vae_scale_factor)
# Preprocess image
if not isinstance(image, torch.Tensor):
image = image_processor.preprocess(image)
image = image.to(device=device, dtype=torch.float32)
# Encode through VAE
init_latents = vae.encode(image).latents
init_latents = vae.config.scaling_factor * init_latents
# Get shape for noise
shape = init_latents.shape
# Generate noise
noise = randn_tensor(shape, generator=generator, device=device)
# Pack latents using Flux's method
init_latents = _pack_latents(
init_latents,
shape[0], # batch size
transformer.config.in_channels // 4,
height=shape[2],
width=shape[3]
)
noise = _pack_latents(
noise,
shape[0],
transformer.config.in_channels // 4,
height=shape[2],
width=shape[3]
)
# Get timestep
timestep = scheduler.timesteps[timesteps_to:timesteps_to+1]
# Add noise to latents
noisy_latents = scheduler.add_noise(init_latents, noise, timestep)
return noisy_latents, noise