SliderSpace / app.py
RohitGandikota's picture
Update app.py
d6df5e4 verified
raw
history blame
8.82 kB
import gradio as gr
import numpy as np
import random
import os
import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch
from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
import sys
sys.path.append('.')
from utils.lora import LoRANetwork, DEFAULT_TARGET_REPLACE, UNET_TARGET_REPLACE_MODULE_CONV
model_repo_id = "stabilityai/stable-diffusion-xl-base-1.0"
repo_name = "tianweiy/DMD2"
ckpt_name = "dmd2_sdxl_4step_unet_fp16.bin"
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch_dtype = torch.bfloat16
else:
torch_dtype = torch.float32
# Load model.
unet = UNet2DConditionModel.from_config(model_repo_id, subfolder="unet").to(device, torch_dtype)
unet.load_state_dict(torch.load(hf_hub_download(repo_name, ckpt_name)))
pipe = DiffusionPipeline.from_pretrained(model_repo_id, unet=unet, torch_dtype=torch_dtype).to(device)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
unet = pipe.unet
## Change these parameters based on how you trained your sliderspace sliders
train_method = 'xattn-strict'
rank = 1
alpha =1
networks = {}
modules = DEFAULT_TARGET_REPLACE
modules += UNET_TARGET_REPLACE_MODULE_CONV
for i in range(1):
networks[i] = LoRANetwork(
unet,
rank=int(rank),
multiplier=1.0,
alpha=int(alpha),
train_method=train_method,
fast_init=True,
).to(device, dtype=torch_dtype)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU #[uncomment to use ZeroGPU]
def infer(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
slider_space,
discovered_directions,
slider_scale,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
sliderspace_path = f"sliderspace_weights/{slider_space}/slider_{int(discovered_directions[-1])-1}.pt"
for net in networks:
networks[net].load_state_dict(torch.load(sliderspace_path))
for net in networks:
networks[net].set_lora_slider(slider_scale)
with networks[0]:
pass
# original image
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
# edited image
generator = torch.Generator().manual_seed(seed)
with networks[0]:
slider_image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, slider_image, seed
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
ORIGINAL_SPACE_ID = 'baulab/SliderSpace'
SPACE_ID = os.getenv('SPACE_ID')
SHARED_UI_WARNING = f'''## You can duplicate and use it with a gpu with at least 24GB, or clone this repository to run on your own machine.
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
'''
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # SliderSpace: Decomposing Visual Capabilities of Diffusion Models")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
# New dropdowns side by side
with gr.Row():
slider_space = gr.Dropdown(
choices= [
"alien",
"ancient ruins",
"animal",
"bike",
"car",
"Citadel",
"coral",
"cowboy",
"face",
"futuristic cities",
"monster",
"mystical creature",
"planet",
"plant",
"robot",
"sculpture",
"spaceship",
"statue",
"studio",
"video game",
"wizard"
],
label="SliderSpace",
value="spaceship"
)
discovered_directions = gr.Dropdown(
choices=[f"Slider {i}" for i in range(1, 11)],
label="Discovered Directions",
value="Slider 1"
)
slider_scale = gr.Slider(
label="Slider Scale",
minimum=-2,
maximum=2,
step=0.1,
value=1,
)
with gr.Row():
result = gr.Image(label="Original Image", show_label=True)
slider_result = gr.Image(label="Discovered Edit Direction", show_label=True)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # Replace with defaults that work for your model
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=2.0,
step=0.1,
value=0.0, # Replace with defaults that work for your model
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4, # Replace with defaults that work for your model
)
# gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
slider_space,
discovered_directions,
slider_scale
],
outputs=[result, slider_result, seed],
)
if __name__ == "__main__":
demo.launch(share=True)