Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,142 Bytes
4cbd4f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 |
from typing import Optional, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import UNet2DConditionModel, SchedulerMixin, FluxImg2ImgPipeline
from diffusers.image_processor import VaeImageProcessor
# from model_util import SDXL_TEXT_ENCODER_TYPE
from diffusers.utils.torch_utils import randn_tensor
from tqdm import tqdm
UNET_IN_CHANNELS = 4 # Stable Diffusion の in_channels は 4 で固定。XLも同じ。
VAE_SCALE_FACTOR = 8 # 2 ** (len(vae.config.block_out_channels) - 1) = 8
UNET_ATTENTION_TIME_EMBED_DIM = 256 # XL
TEXT_ENCODER_2_PROJECTION_DIM = 1280
UNET_PROJECTION_CLASS_EMBEDDING_INPUT_DIM = 2816
def get_random_noise(
batch_size: int, height: int, width: int, generator: torch.Generator = None
) -> torch.Tensor:
return torch.randn(
(
batch_size,
UNET_IN_CHANNELS,
height // VAE_SCALE_FACTOR, # 縦と横これであってるのかわからないけど、どっちにしろ大きな問題は発生しないのでこれでいいや
width // VAE_SCALE_FACTOR,
),
generator=generator,
device="cpu",
)
# https://www.crosslabs.org/blog/diffusion-with-offset-noise
def apply_noise_offset(latents: torch.FloatTensor, noise_offset: float):
latents = latents + noise_offset * torch.randn(
(latents.shape[0], latents.shape[1], 1, 1), device=latents.device
)
return latents
def get_initial_latents(
scheduler: SchedulerMixin,
n_imgs: int,
height: int,
width: int,
n_prompts: int,
generator=None,
) -> torch.Tensor:
noise = get_random_noise(n_imgs, height, width, generator=generator).repeat(
n_prompts, 1, 1, 1
)
latents = noise * scheduler.init_noise_sigma
return latents
def text_tokenize(
tokenizer: CLIPTokenizer, # 普通ならひとつ、XLならふたつ!
prompts: list[str],
):
return tokenizer(
prompts,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
).input_ids
def text_encode(text_encoder: CLIPTextModel, tokens):
return text_encoder(tokens.to(text_encoder.device))[0]
def encode_prompts(
tokenizer: CLIPTokenizer,
text_encoder: CLIPTokenizer,
prompts: list[str],
):
text_tokens = text_tokenize(tokenizer, prompts)
text_embeddings = text_encode(text_encoder, text_tokens)
return text_embeddings
# https://github.com/huggingface/diffusers/blob/78922ed7c7e66c20aa95159c7b7a6057ba7d590d/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py#L334-L348
def text_encode_xl(
text_encoder,
tokens: torch.FloatTensor,
num_images_per_prompt: int = 1,
):
prompt_embeds = text_encoder(
tokens.to(text_encoder.device), output_hidden_states=True
)
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.hidden_states[-2] # always penultimate layer
bs_embed, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
return prompt_embeds, pooled_prompt_embeds
def encode_prompts_xl(
tokenizers,
text_encoders,
prompts: list[str],
num_images_per_prompt: int = 1,
) -> tuple[torch.FloatTensor, torch.FloatTensor]:
# text_encoder and text_encoder_2's penuultimate layer's output
text_embeds_list = []
pooled_text_embeds = None # always text_encoder_2's pool
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
text_tokens_input_ids = text_tokenize(tokenizer, prompts)
text_embeds, pooled_text_embeds = text_encode_xl(
text_encoder, text_tokens_input_ids, num_images_per_prompt
)
text_embeds_list.append(text_embeds)
bs_embed = pooled_text_embeds.shape[0]
pooled_text_embeds = pooled_text_embeds.repeat(1, num_images_per_prompt).view(
bs_embed * num_images_per_prompt, -1
)
return torch.concat(text_embeds_list, dim=-1), pooled_text_embeds
def concat_embeddings(
unconditional: torch.FloatTensor,
conditional: torch.FloatTensor,
n_imgs: int,
):
return torch.cat([unconditional, conditional]).repeat_interleave(n_imgs, dim=0)
# ref: https://github.com/huggingface/diffusers/blob/0bab447670f47c28df60fbd2f6a0f833f75a16f5/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L721
def predict_noise(
unet: UNet2DConditionModel,
scheduler: SchedulerMixin,
timestep: int, # 現在のタイムステップ
latents: torch.FloatTensor,
text_embeddings: torch.FloatTensor, # uncond な text embed と cond な text embed を結合したもの
guidance_scale=7.5,
) -> torch.FloatTensor:
latent_model_input = latents
if guidance_scale!=0:
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
latent_model_input = scheduler.scale_model_input(latent_model_input, timestep)
# predict the noise residual
noise_pred = unet(
latent_model_input,
timestep,
encoder_hidden_states=text_embeddings,
).sample
# perform guidance
if guidance_scale != 1 and guidance_scale!=0:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
return noise_pred
# ref: https://github.com/huggingface/diffusers/blob/0bab447670f47c28df60fbd2f6a0f833f75a16f5/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L746
@torch.no_grad()
def diffusion(
unet: UNet2DConditionModel,
scheduler: SchedulerMixin,
latents: torch.FloatTensor, # ただのノイズだけのlatents
text_embeddings: torch.FloatTensor,
total_timesteps: int = 1000,
start_timesteps=0,
guidance_scale=1,
composition=False,
**kwargs,
):
# latents_steps = []
for timestep in scheduler.timesteps[start_timesteps:total_timesteps]:
if not composition:
noise_pred = predict_noise(
unet, scheduler, timestep, latents, text_embeddings, guidance_scale=guidance_scale
)
if guidance_scale==1:
_, noise_pred = noise_pred.chunk(2)
else:
for idx in range(text_embeddings.shape[0]):
pred = predict_noise(
unet, scheduler, timestep, latents, text_embeddings[idx:idx+1], guidance_scale=1
)
uncond, pred = noise_pred.chunk(2)
if idx == 0:
noise_pred = guidance_scale * pred
else:
noise_pred += guidance_scale * pred
noise_pred += uncond
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, timestep, latents).prev_sample
# return latents_steps
return latents
def rescale_noise_cfg(
noise_cfg: torch.FloatTensor, noise_pred_text, guidance_rescale=0.0
):
"""
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_text = noise_pred_text.std(
dim=list(range(1, noise_pred_text.ndim)), keepdim=True
)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = (
guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
)
return noise_cfg
def predict_noise_xl(
unet: UNet2DConditionModel,
scheduler: SchedulerMixin,
timestep: int, # 現在のタイムステップ
latents: torch.FloatTensor,
text_embeddings: torch.FloatTensor, # uncond な text embed と cond な text embed を結合したもの
add_text_embeddings: torch.FloatTensor, # pooled なやつ
add_time_ids: torch.FloatTensor,
guidance_scale=7.5,
guidance_rescale=0.7,
) -> torch.FloatTensor:
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = latents
if guidance_scale !=0:
latent_model_input = torch.cat([latents] * 2)
latent_model_input = scheduler.scale_model_input(latent_model_input, timestep)
added_cond_kwargs = {
"text_embeds": add_text_embeddings,
"time_ids": add_time_ids,
}
# predict the noise residual
noise_pred = unet(
latent_model_input,
timestep,
encoder_hidden_states=text_embeddings,
added_cond_kwargs=added_cond_kwargs,
).sample
# perform guidance
if guidance_scale != 1 and guidance_scale!=0:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
return noise_pred
# # perform guidance
# noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
# guided_target = noise_pred_uncond + guidance_scale * (
# noise_pred_text - noise_pred_uncond
# )
# # https://github.com/huggingface/diffusers/blob/7a91ea6c2b53f94da930a61ed571364022b21044/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py#L775
# noise_pred = rescale_noise_cfg(
# noise_pred, noise_pred_text, guidance_rescale=guidance_rescale
# )
# return guided_target
@torch.no_grad()
def diffusion_xl(
unet: UNet2DConditionModel,
scheduler: SchedulerMixin,
latents: torch.FloatTensor, # ただのノイズだけのlatents
text_embeddings: tuple[torch.FloatTensor, torch.FloatTensor],
add_text_embeddings: torch.FloatTensor, # pooled なやつ
add_time_ids: torch.FloatTensor,
guidance_scale: float = 1.0,
total_timesteps: int = 1000,
start_timesteps=0,
composition=False,
):
# latents_steps = []
for timestep in scheduler.timesteps[start_timesteps:total_timesteps]:
if not composition:
noise_pred = predict_noise_xl(
unet,
scheduler,
timestep,
latents,
text_embeddings,
add_text_embeddings,
add_time_ids,
guidance_scale=guidance_scale,
guidance_rescale=0.7,
)
if guidance_scale==1:
_, noise_pred = noise_pred.chunk(2)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, timestep, latents).prev_sample
# return latents_steps
return latents
# for XL
def get_add_time_ids(
height: int,
width: int,
dynamic_crops: bool = False,
dtype: torch.dtype = torch.float32,
):
if dynamic_crops:
# random float scale between 1 and 3
random_scale = torch.rand(1).item() * 2 + 1
original_size = (int(height * random_scale), int(width * random_scale))
# random position
crops_coords_top_left = (
torch.randint(0, original_size[0] - height, (1,)).item(),
torch.randint(0, original_size[1] - width, (1,)).item(),
)
target_size = (height, width)
else:
original_size = (height, width)
crops_coords_top_left = (0, 0)
target_size = (height, width)
# this is expected as 6
add_time_ids = list(original_size + crops_coords_top_left + target_size)
# this is expected as 2816
passed_add_embed_dim = (
UNET_ATTENTION_TIME_EMBED_DIM * len(add_time_ids) # 256 * 6
+ TEXT_ENCODER_2_PROJECTION_DIM # + 1280
)
if passed_add_embed_dim != UNET_PROJECTION_CLASS_EMBEDDING_INPUT_DIM:
raise ValueError(
f"Model expects an added time embedding vector of length {UNET_PROJECTION_CLASS_EMBEDDING_INPUT_DIM}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
)
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
return add_time_ids
def get_optimizer(name: str):
name = name.lower()
if name.startswith("dadapt"):
import dadaptation
if name == "dadaptadam":
return dadaptation.DAdaptAdam
elif name == "dadaptlion":
return dadaptation.DAdaptLion
else:
raise ValueError("DAdapt optimizer must be dadaptadam or dadaptlion")
elif name.endswith("8bit"): # 検証してない
import bitsandbytes as bnb
if name == "adam8bit":
return bnb.optim.Adam8bit
elif name == "lion8bit":
return bnb.optim.Lion8bit
else:
raise ValueError("8bit optimizer must be adam8bit or lion8bit")
else:
if name == "adam":
return torch.optim.Adam
elif name == "adamw":
return torch.optim.AdamW
elif name == "lion":
from lion_pytorch import Lion
return Lion
elif name == "prodigy":
import prodigyopt
return prodigyopt.Prodigy
else:
raise ValueError("Optimizer must be adam, adamw, lion or Prodigy")
@torch.no_grad()
def get_noisy_image(
image,
vae,
unet,
scheduler,
timesteps_to = 1000,
generator=None,
**kwargs,
):
# latents_steps = []
vae_scale_factor = 2 ** (len(vae.config.block_out_channels) - 1)
image_processor = VaeImageProcessor(vae_scale_factor=vae_scale_factor)
device = vae.device
image = image_processor.preprocess(image).to(device).to(vae.dtype)
init_latents = vae.encode(image).latents
init_latents = vae.config.scaling_factor * init_latents
init_latents = torch.cat([init_latents], dim=0)
shape = init_latents.shape
noise = randn_tensor(shape, generator=generator, device=device)
timestep = scheduler.timesteps[timesteps_to:timesteps_to+1]
# get latents
init_latents = scheduler.add_noise(init_latents, noise, timestep)
return init_latents, noise
def get_lr_scheduler(
name: Optional[str],
optimizer: torch.optim.Optimizer,
max_iterations: Optional[int],
lr_min: Optional[float],
**kwargs,
):
if name == "cosine":
return torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, T_max=max_iterations, eta_min=lr_min, **kwargs
)
elif name == "cosine_with_restarts":
return torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(
optimizer, T_0=max_iterations // 10, T_mult=2, eta_min=lr_min, **kwargs
)
elif name == "step":
return torch.optim.lr_scheduler.StepLR(
optimizer, step_size=max_iterations // 100, gamma=0.999, **kwargs
)
elif name == "constant":
return torch.optim.lr_scheduler.ConstantLR(optimizer, factor=1, **kwargs)
elif name == "linear":
return torch.optim.lr_scheduler.LinearLR(
optimizer, factor=0.5, total_iters=max_iterations // 100, **kwargs
)
else:
raise ValueError(
"Scheduler must be cosine, cosine_with_restarts, step, linear or constant"
)
def get_random_resolution_in_bucket(bucket_resolution: int = 512) -> tuple[int, int]:
max_resolution = bucket_resolution
min_resolution = bucket_resolution // 2
step = 64
min_step = min_resolution // step
max_step = max_resolution // step
height = torch.randint(min_step, max_step, (1,)).item() * step
width = torch.randint(min_step, max_step, (1,)).item() * step
return height, width
def _get_t5_prompt_embeds(
text_encoder,
tokenizer,
prompt,
max_sequence_length=512,
device=None,
dtype=None
):
"""Helper function to get T5 embeddings in Flux format"""
device = device or text_encoder.device
dtype = dtype or text_encoder.dtype
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
return_length=False,
return_overflowing_tokens=False,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=False)[0]
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
return prompt_embeds
def _get_clip_prompt_embeds(
text_encoder,
tokenizer,
prompt,
device=None,
):
"""Helper function to get CLIP embeddings in Flux format"""
device = device or text_encoder.device
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_overflowing_tokens=False,
return_length=False,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=False)
# Use pooled output for Flux
prompt_embeds = prompt_embeds.pooler_output
prompt_embeds = prompt_embeds.to(dtype=text_encoder.dtype, device=device)
return prompt_embeds
@torch.no_grad()
def get_noisy_image_flux(
image,
vae,
transformer,
scheduler,
timesteps_to=1000,
generator=None,
params = None
):
"""
Gets noisy latents for a given image using Flux pipeline approach.
Args:
image (Union[PIL.Image.Image, torch.Tensor]): Input image
vae (AutoencoderKL): Flux VAE model
transformer (FluxTransformer2DModel): Flux transformer model
scheduler (FlowMatchEulerDiscreteScheduler): Flux noise scheduler
timesteps_to (int, optional): Target timestep. Defaults to 1000.
generator (torch.Generator, optional): Random generator for reproducibility.
Returns:
tuple: (noisy_latents, noise) - Both in packed Flux format
"""
vae_scale_factor = params['vae_scale_factor']
image_processor = VaeImageProcessor(vae_scale_factor=vae_scale_factor * 2)
image = image_processor.preprocess(image, height=params['height'], width=params['width'])
image = image.to(dtype=torch.float32)
# 5. Prepare latent variables
num_channels_latents = transformer.config.in_channels // 4
latents, latent_image_ids = prepare_latents_flux(
image,
timesteps_to.repeat(params['batchsize']),
params['batchsize'],
num_channels_latents,
params['height'],
params['width'],
transformer.dtype,
transformer.device,
generator,
None,
vae_scale_factor,
vae,
scheduler
)
return latents, latent_image_ids
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
"""
Pack latents into Flux's 2x2 patch format
"""
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
latents = latents.permute(0, 2, 4, 1, 3, 5)
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
return latents
def _unpack_latents(latents, height, width, vae_scale_factor):
"""
Unpack latents from Flux's 2x2 patch format back to image space
"""
batch_size, num_patches, channels = latents.shape
# Account for VAE compression and packing
height = 2 * (int(height) // (vae_scale_factor * 2))
width = 2 * (int(width) // (vae_scale_factor * 2))
latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
latents = latents.permute(0, 3, 1, 4, 2, 5)
latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
return latents
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
latent_image_ids = torch.zeros(height, width, 3)
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
latent_image_ids = latent_image_ids.reshape(
latent_image_id_height * latent_image_id_width, latent_image_id_channels
)
return latent_image_ids.to(device=device, dtype=dtype)
def prepare_latents_flux(
image,
timestep,
batch_size,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
vae_scale_factor=None,
vae=None,
scheduler=None
):
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
# VAE applies 8x compression on images but we must also account for packing which requires
# latent height and width to be divisible by 2.
height = 2 * (int(height) // (vae_scale_factor * 2))
width = 2 * (int(width) // (vae_scale_factor * 2))
shape = (batch_size, num_channels_latents, height, width)
latent_image_ids = _prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
if latents is not None:
return latents.to(device=device, dtype=dtype), latent_image_ids
image = image.to(device=device, dtype=dtype)
image_latents = _encode_vae_image(vae=vae, image=image, generator=generator)
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
# expand init_latents for batch_size
additional_image_per_prompt = batch_size // image_latents.shape[0]
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
raise ValueError(
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
)
else:
image_latents = torch.cat([image_latents], dim=0)
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
latents = scheduler.scale_noise(image_latents, timestep, noise)
latents = _pack_latents(latents, batch_size, num_channels_latents, height, width)
return latents, latent_image_ids
def _encode_vae_image(vae, image: torch.Tensor, generator: torch.Generator):
if isinstance(generator, list):
image_latents = [
retrieve_latents(vae.encode(image[i : i + 1]), generator=generator[i])
for i in range(image.shape[0])
]
image_latents = torch.cat(image_latents, dim=0)
else:
image_latents = retrieve_latents(vae.encode(image), generator=generator)
image_latents = (image_latents - vae.config.shift_factor) * vae.config.scaling_factor
return image_latents
def retrieve_latents(
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
return encoder_output.latent_dist.sample(generator)
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
return encoder_output.latent_dist.mode()
elif hasattr(encoder_output, "latents"):
return encoder_output.latents
else:
raise AttributeError("Could not access latents of provided encoder_output") |