Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,296 Bytes
4cbd4f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
from typing import Literal, Union, Optional
import torch, gc, os
from transformers import CLIPTextModel, CLIPTokenizer, CLIPTextModelWithProjection, T5TokenizerFast
from transformers import (
AutoModel,
CLIPModel,
CLIPProcessor,
)
from huggingface_hub import hf_hub_download
from diffusers import (
UNet2DConditionModel,
SchedulerMixin,
StableDiffusionPipeline,
StableDiffusionXLPipeline,
FluxPipeline,
AutoencoderKL,
FluxTransformer2DModel,
)
import copy
from diffusers.schedulers import (
DDIMScheduler,
DDPMScheduler,
LMSDiscreteScheduler,
EulerAncestralDiscreteScheduler,
FlowMatchEulerDiscreteScheduler,
)
from diffusers import LCMScheduler, AutoencoderTiny
import sys
sys.path.append('.')
from .flux_utils import *
TOKENIZER_V1_MODEL_NAME = "CompVis/stable-diffusion-v1-4"
TOKENIZER_V2_MODEL_NAME = "stabilityai/stable-diffusion-2-1"
AVAILABLE_SCHEDULERS = Literal["ddim", "ddpm", "lms", "euler_a"]
SDXL_TEXT_ENCODER_TYPE = Union[CLIPTextModel, CLIPTextModelWithProjection]
DIFFUSERS_CACHE_DIR = None # if you want to change the cache dir, change this
def load_diffusers_model(
pretrained_model_name_or_path: str,
v2: bool = False,
clip_skip: Optional[int] = None,
weight_dtype: torch.dtype = torch.float32,
) -> tuple[CLIPTokenizer, CLIPTextModel, UNet2DConditionModel,]:
# VAE はいらない
if v2:
tokenizer = CLIPTokenizer.from_pretrained(
TOKENIZER_V2_MODEL_NAME,
subfolder="tokenizer",
torch_dtype=weight_dtype,
cache_dir=DIFFUSERS_CACHE_DIR,
)
text_encoder = CLIPTextModel.from_pretrained(
pretrained_model_name_or_path,
subfolder="text_encoder",
# default is clip skip 2
num_hidden_layers=24 - (clip_skip - 1) if clip_skip is not None else 23,
torch_dtype=weight_dtype,
cache_dir=DIFFUSERS_CACHE_DIR,
)
else:
tokenizer = CLIPTokenizer.from_pretrained(
TOKENIZER_V1_MODEL_NAME,
subfolder="tokenizer",
torch_dtype=weight_dtype,
cache_dir=DIFFUSERS_CACHE_DIR,
)
text_encoder = CLIPTextModel.from_pretrained(
pretrained_model_name_or_path,
subfolder="text_encoder",
num_hidden_layers=12 - (clip_skip - 1) if clip_skip is not None else 12,
torch_dtype=weight_dtype,
cache_dir=DIFFUSERS_CACHE_DIR,
)
unet = UNet2DConditionModel.from_pretrained(
pretrained_model_name_or_path,
subfolder="unet",
torch_dtype=weight_dtype,
cache_dir=DIFFUSERS_CACHE_DIR,
)
return tokenizer, text_encoder, unet
def load_checkpoint_model(
checkpoint_path: str,
v2: bool = False,
clip_skip: Optional[int] = None,
weight_dtype: torch.dtype = torch.float32,
) -> tuple[CLIPTokenizer, CLIPTextModel, UNet2DConditionModel,]:
pipe = StableDiffusionPipeline.from_ckpt(
checkpoint_path,
upcast_attention=True if v2 else False,
torch_dtype=weight_dtype,
cache_dir=DIFFUSERS_CACHE_DIR,
)
unet = pipe.unet
tokenizer = pipe.tokenizer
text_encoder = pipe.text_encoder
if clip_skip is not None:
if v2:
text_encoder.config.num_hidden_layers = 24 - (clip_skip - 1)
else:
text_encoder.config.num_hidden_layers = 12 - (clip_skip - 1)
del pipe
return tokenizer, text_encoder, unet
def load_models(
pretrained_model_name_or_path: str,
scheduler_name: AVAILABLE_SCHEDULERS,
v2: bool = False,
v_pred: bool = False,
weight_dtype: torch.dtype = torch.float32,
) -> tuple[CLIPTokenizer, CLIPTextModel, UNet2DConditionModel, SchedulerMixin,]:
if pretrained_model_name_or_path.endswith(
".ckpt"
) or pretrained_model_name_or_path.endswith(".safetensors"):
tokenizer, text_encoder, unet = load_checkpoint_model(
pretrained_model_name_or_path, v2=v2, weight_dtype=weight_dtype
)
else: # diffusers
tokenizer, text_encoder, unet = load_diffusers_model(
pretrained_model_name_or_path, v2=v2, weight_dtype=weight_dtype
)
# VAE はいらない
scheduler = create_noise_scheduler(
scheduler_name,
prediction_type="v_prediction" if v_pred else "epsilon",
)
return tokenizer, text_encoder, unet, scheduler
def load_diffusers_model_xl(
pretrained_model_name_or_path: str,
weight_dtype: torch.dtype = torch.float32,
) -> tuple[list[CLIPTokenizer], list[SDXL_TEXT_ENCODER_TYPE], UNet2DConditionModel,]:
# returns tokenizer, tokenizer_2, text_encoder, text_encoder_2, unet
tokenizers = [
CLIPTokenizer.from_pretrained(
pretrained_model_name_or_path,
subfolder="tokenizer",
torch_dtype=weight_dtype,
cache_dir=DIFFUSERS_CACHE_DIR,
),
CLIPTokenizer.from_pretrained(
pretrained_model_name_or_path,
subfolder="tokenizer_2",
torch_dtype=weight_dtype,
cache_dir=DIFFUSERS_CACHE_DIR,
pad_token_id=0, # same as open clip
),
]
text_encoders = [
CLIPTextModel.from_pretrained(
pretrained_model_name_or_path,
subfolder="text_encoder",
torch_dtype=weight_dtype,
cache_dir=DIFFUSERS_CACHE_DIR,
),
CLIPTextModelWithProjection.from_pretrained(
pretrained_model_name_or_path,
subfolder="text_encoder_2",
torch_dtype=weight_dtype,
cache_dir=DIFFUSERS_CACHE_DIR,
),
]
unet = UNet2DConditionModel.from_pretrained(
pretrained_model_name_or_path,
subfolder="unet",
torch_dtype=weight_dtype,
cache_dir=DIFFUSERS_CACHE_DIR,
)
return tokenizers, text_encoders, unet
def load_checkpoint_model_xl(
checkpoint_path: str,
weight_dtype: torch.dtype = torch.float32,
) -> tuple[list[CLIPTokenizer], list[SDXL_TEXT_ENCODER_TYPE], UNet2DConditionModel,]:
pipe = StableDiffusionXLPipeline.from_single_file(
checkpoint_path,
torch_dtype=weight_dtype,
cache_dir=DIFFUSERS_CACHE_DIR,
)
unet = pipe.unet
tokenizers = [pipe.tokenizer, pipe.tokenizer_2]
text_encoders = [pipe.text_encoder, pipe.text_encoder_2]
if len(text_encoders) == 2:
text_encoders[1].pad_token_id = 0
del pipe
return tokenizers, text_encoders, unet
def load_models_xl_(
pretrained_model_name_or_path: str,
scheduler_name: AVAILABLE_SCHEDULERS,
weight_dtype: torch.dtype = torch.float32,
) -> tuple[
list[CLIPTokenizer],
list[SDXL_TEXT_ENCODER_TYPE],
UNet2DConditionModel,
SchedulerMixin,
]:
if pretrained_model_name_or_path.endswith(
".ckpt"
) or pretrained_model_name_or_path.endswith(".safetensors"):
(
tokenizers,
text_encoders,
unet,
) = load_checkpoint_model_xl(pretrained_model_name_or_path, weight_dtype)
else: # diffusers
(
tokenizers,
text_encoders,
unet,
) = load_diffusers_model_xl(pretrained_model_name_or_path, weight_dtype)
scheduler = create_noise_scheduler(scheduler_name)
return tokenizers, text_encoders, unet, scheduler
def create_noise_scheduler(
scheduler_name: AVAILABLE_SCHEDULERS = "ddpm",
prediction_type: Literal["epsilon", "v_prediction"] = "epsilon",
) -> SchedulerMixin:
# 正直、どれがいいのかわからない。元の実装だとDDIMとDDPMとLMSを選べたのだけど、どれがいいのかわからぬ。
name = scheduler_name.lower().replace(" ", "_")
if name == "ddim":
# https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/ddim
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
clip_sample=False,
prediction_type=prediction_type, # これでいいの?
)
elif name == "ddpm":
# https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/ddpm
scheduler = DDPMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
clip_sample=False,
prediction_type=prediction_type,
)
elif name == "lms":
# https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/lms_discrete
scheduler = LMSDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
prediction_type=prediction_type,
)
elif name == "euler_a":
# https://huggingface.co/docs/diffusers/v0.17.1/en/api/schedulers/euler_ancestral
scheduler = EulerAncestralDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
# clip_sample=False,
prediction_type=prediction_type,
)
else:
raise ValueError(f"Unknown scheduler name: {name}")
return scheduler
def load_models_xl(params):
"""
Load all required models for training
Args:
params: Dictionary containing model parameters and configurations
Returns:
dict: Dictionary containing all loaded models and tokenizers
"""
device = params['device']
weight_dtype = params['weight_dtype']
# Load SDXL components (UNet, text encoders, tokenizers)
scheduler_name = 'ddim'
tokenizers, text_encoders, unet, noise_scheduler = load_models_xl_(
params['pretrained_model_name_or_path'],
scheduler_name=scheduler_name,
)
# Move text encoders to device and set to eval mode
for text_encoder in text_encoders:
text_encoder.to(device, dtype=weight_dtype)
text_encoder.requires_grad_(False)
text_encoder.eval()
# Set up UNet
unet.to(device, dtype=weight_dtype)
unet.requires_grad_(False)
unet.eval()
# Load tiny VAE for efficiency
vae = AutoencoderTiny.from_pretrained(
"madebyollin/taesdxl",
torch_dtype=weight_dtype
)
vae = vae.to(device, dtype=weight_dtype)
vae.requires_grad_(False)
# Load appropriate encoder (CLIP or DinoV2)
if params['encoder'] == 'dinov2-small':
clip_model = AutoModel.from_pretrained(
'facebook/dinov2-small',
torch_dtype=weight_dtype
)
clip_processor= None
else:
clip_model = CLIPModel.from_pretrained(
"wkcn/TinyCLIP-ViT-40M-32-Text-19M-LAION400M",
torch_dtype=weight_dtype
)
clip_processor = CLIPProcessor.from_pretrained("wkcn/TinyCLIP-ViT-40M-32-Text-19M-LAION400M")
clip_model = clip_model.to(device, dtype=weight_dtype)
clip_model.requires_grad_(False)
# If using DMD checkpoint, load it
if params['distilled'] != 'None':
if '.safetensors' in params['distilled']:
unet.load_state_dict(load_file(params['distilled'], device=device))
elif 'dmd2' in params['distilled']:
repo_name = "tianweiy/DMD2"
ckpt_name = "dmd2_sdxl_4step_unet_fp16.bin"
unet.load_state_dict(torch.load(hf_hub_download(repo_name, ckpt_name)))
else:
unet.load_state_dict(torch.load(params['distilled']))
# Set up LCM scheduler for DMD
noise_scheduler = LCMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
prediction_type="epsilon",
original_inference_steps=1000
)
noise_scheduler.set_timesteps(params['max_denoising_steps'])
pipe = StableDiffusionXLPipeline(vae = vae,
text_encoder = text_encoders[0],
text_encoder_2 = text_encoders[1],
tokenizer = tokenizers[0],
tokenizer_2 = tokenizers[1],
unet = unet,
scheduler = noise_scheduler)
pipe.set_progress_bar_config(disable=True)
return {
'unet': unet,
'vae': vae,
'clip_model': clip_model,
'clip_processor': clip_processor,
'tokenizers': tokenizers,
'text_encoders': text_encoders,
'noise_scheduler': noise_scheduler
}, pipe
def load_models_flux(params):
# Load the tokenizers
tokenizer_one = CLIPTokenizer.from_pretrained(
params['pretrained_model_name_or_path'],
subfolder="tokenizer",
torch_dtype=params['weight_dtype'], device_map=params['device']
)
tokenizer_two = T5TokenizerFast.from_pretrained(
params['pretrained_model_name_or_path'],
subfolder="tokenizer_2",
torch_dtype=params['weight_dtype'], device_map=params['device']
)
# Load scheduler and models
noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
params['pretrained_model_name_or_path'],
subfolder="scheduler",
torch_dtype=params['weight_dtype'], device=params['device']
)
noise_scheduler_copy = copy.deepcopy(noise_scheduler)
# import correct text encoder classes
text_encoder_cls_one = import_model_class_from_model_name_or_path(
params['pretrained_model_name_or_path'],
)
text_encoder_cls_two = import_model_class_from_model_name_or_path(
params['pretrained_model_name_or_path'], subfolder="text_encoder_2"
)
# Load the text encoders
text_encoder_one, text_encoder_two = load_text_encoders(params['pretrained_model_name_or_path'], text_encoder_cls_one, text_encoder_cls_two, params['weight_dtype'])
# Load VAE
vae = AutoencoderKL.from_pretrained(
params['pretrained_model_name_or_path'],
subfolder="vae",
torch_dtype=params['weight_dtype'], device_map='auto'
)
transformer = FluxTransformer2DModel.from_pretrained(
params['pretrained_model_name_or_path'],
subfolder="transformer",
torch_dtype=params['weight_dtype']
)
# We only train the additional adapter LoRA layers
transformer.requires_grad_(False)
vae.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
vae.to(params['device'])
transformer.to(params['device'])
text_encoder_one.to(params['device'])
text_encoder_two.to(params['device'])
# Load appropriate encoder (CLIP or DinoV2)
if params['encoder'] == 'dinov2-small':
clip_model = AutoModel.from_pretrained(
'facebook/dinov2-small',
torch_dtype=params['weight_dtype']
)
clip_processor= None
else:
clip_model = CLIPModel.from_pretrained(
"wkcn/TinyCLIP-ViT-40M-32-Text-19M-LAION400M",
torch_dtype=params['weight_dtype']
)
clip_processor = CLIPProcessor.from_pretrained("wkcn/TinyCLIP-ViT-40M-32-Text-19M-LAION400M")
clip_model = clip_model.to(params['device'], dtype=params['weight_dtype'])
clip_model.requires_grad_(False)
pipe = FluxPipeline(noise_scheduler,
vae,
text_encoder_one,
tokenizer_one,
text_encoder_two,
tokenizer_two,
transformer,
)
pipe.set_progress_bar_config(disable=True)
return {
'transformer': transformer,
'vae': vae,
'clip_model': clip_model,
'clip_processor': clip_processor,
'tokenizers': [tokenizer_one, tokenizer_two],
'text_encoders': [text_encoder_one,text_encoder_two],
'noise_scheduler': noise_scheduler
}, pipe
def save_checkpoint(networks, save_path, weight_dtype):
"""
Save network weights and perform cleanup
Args:
networks: Dictionary of LoRA networks to save
save_path: Path to save the checkpoints
weight_dtype: Data type for the weights
"""
print("Saving checkpoint...")
try:
# Create save directory if it doesn't exist
os.makedirs(save_path, exist_ok=True)
# Save each network's weights
for net_idx, network in networks.items():
save_name = f"{save_path}/slider_{net_idx}.pt"
try:
network.save_weights(
save_name,
dtype=weight_dtype,
)
except Exception as e:
print(f"Error saving network {net_idx}: {str(e)}")
continue
# Cleanup
torch.cuda.empty_cache()
gc.collect()
print("Checkpoint saved successfully.")
except Exception as e:
print(f"Error during checkpoint saving: {str(e)}")
finally:
# Ensure memory is cleaned up even if save fails
torch.cuda.empty_cache()
gc.collect() |