|
import numpy as np
|
|
import cv2
|
|
from PIL import Image, ImageDraw
|
|
|
|
label_map = {
|
|
"background": 0,
|
|
"hat": 1,
|
|
"hair": 2,
|
|
"sunglasses": 3,
|
|
"upper_clothes": 4,
|
|
"skirt": 5,
|
|
"pants": 6,
|
|
"dress": 7,
|
|
"belt": 8,
|
|
"left_shoe": 9,
|
|
"right_shoe": 10,
|
|
"head": 11,
|
|
"left_leg": 12,
|
|
"right_leg": 13,
|
|
"left_arm": 14,
|
|
"right_arm": 15,
|
|
"bag": 16,
|
|
"scarf": 17,
|
|
}
|
|
|
|
def extend_arm_mask(wrist, elbow, scale):
|
|
wrist = elbow + scale * (wrist - elbow)
|
|
return wrist
|
|
|
|
def hole_fill(img):
|
|
img = np.pad(img[1:-1, 1:-1], pad_width = 1, mode = 'constant', constant_values=0)
|
|
img_copy = img.copy()
|
|
mask = np.zeros((img.shape[0] + 2, img.shape[1] + 2), dtype=np.uint8)
|
|
|
|
cv2.floodFill(img, mask, (0, 0), 255)
|
|
img_inverse = cv2.bitwise_not(img)
|
|
dst = cv2.bitwise_or(img_copy, img_inverse)
|
|
return dst
|
|
|
|
def refine_mask(mask):
|
|
contours, hierarchy = cv2.findContours(mask.astype(np.uint8),
|
|
cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_L1)
|
|
area = []
|
|
for j in range(len(contours)):
|
|
a_d = cv2.contourArea(contours[j], True)
|
|
area.append(abs(a_d))
|
|
refine_mask = np.zeros_like(mask).astype(np.uint8)
|
|
if len(area) != 0:
|
|
i = area.index(max(area))
|
|
cv2.drawContours(refine_mask, contours, i, color=255, thickness=-1)
|
|
|
|
return refine_mask
|
|
|
|
def get_mask_location(model_type, category, model_parse: Image.Image, keypoint: dict, width=384,height=512):
|
|
im_parse = model_parse.resize((width, height), Image.NEAREST)
|
|
parse_array = np.array(im_parse)
|
|
|
|
if model_type == 'hd':
|
|
arm_width = 60
|
|
elif model_type == 'dc':
|
|
arm_width = 45
|
|
else:
|
|
raise ValueError("model_type must be \'hd\' or \'dc\'!")
|
|
|
|
parse_head = (parse_array == 1).astype(np.float32) + \
|
|
(parse_array == 3).astype(np.float32) + \
|
|
(parse_array == 11).astype(np.float32)
|
|
|
|
parser_mask_fixed = (parse_array == label_map["left_shoe"]).astype(np.float32) + \
|
|
(parse_array == label_map["right_shoe"]).astype(np.float32) + \
|
|
(parse_array == label_map["hat"]).astype(np.float32) + \
|
|
(parse_array == label_map["sunglasses"]).astype(np.float32) + \
|
|
(parse_array == label_map["bag"]).astype(np.float32)
|
|
|
|
parser_mask_changeable = (parse_array == label_map["background"]).astype(np.float32)
|
|
|
|
arms_left = (parse_array == 14).astype(np.float32)
|
|
arms_right = (parse_array == 15).astype(np.float32)
|
|
|
|
if category == 'dresses':
|
|
parse_mask = (parse_array == 7).astype(np.float32) + \
|
|
(parse_array == 4).astype(np.float32) + \
|
|
(parse_array == 5).astype(np.float32) + \
|
|
(parse_array == 6).astype(np.float32)
|
|
|
|
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
|
|
|
|
elif category == 'upper_body':
|
|
parse_mask = (parse_array == 4).astype(np.float32) + (parse_array == 7).astype(np.float32)
|
|
parser_mask_fixed_lower_cloth = (parse_array == label_map["skirt"]).astype(np.float32) + \
|
|
(parse_array == label_map["pants"]).astype(np.float32)
|
|
parser_mask_fixed += parser_mask_fixed_lower_cloth
|
|
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
|
|
elif category == 'lower_body':
|
|
parse_mask = (parse_array == 6).astype(np.float32) + \
|
|
(parse_array == 12).astype(np.float32) + \
|
|
(parse_array == 13).astype(np.float32) + \
|
|
(parse_array == 5).astype(np.float32)
|
|
parser_mask_fixed += (parse_array == label_map["upper_clothes"]).astype(np.float32) + \
|
|
(parse_array == 14).astype(np.float32) + \
|
|
(parse_array == 15).astype(np.float32)
|
|
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
|
|
pose_data = keypoint["pose_keypoints_2d"]
|
|
pose_data = np.array(pose_data)
|
|
pose_data = pose_data.reshape((-1, 2))
|
|
|
|
im_arms_left = Image.new('L', (width, height))
|
|
im_arms_right = Image.new('L', (width, height))
|
|
arms_draw_left = ImageDraw.Draw(im_arms_left)
|
|
arms_draw_right = ImageDraw.Draw(im_arms_right)
|
|
if category == 'dresses' or category == 'upper_body':
|
|
shoulder_right = np.multiply(tuple(pose_data[2][:2]), height / 512.0)
|
|
shoulder_left = np.multiply(tuple(pose_data[5][:2]), height / 512.0)
|
|
elbow_right = np.multiply(tuple(pose_data[3][:2]), height / 512.0)
|
|
elbow_left = np.multiply(tuple(pose_data[6][:2]), height / 512.0)
|
|
wrist_right = np.multiply(tuple(pose_data[4][:2]), height / 512.0)
|
|
wrist_left = np.multiply(tuple(pose_data[7][:2]), height / 512.0)
|
|
ARM_LINE_WIDTH = int(arm_width / 512 * height)
|
|
size_left = [shoulder_left[0] - ARM_LINE_WIDTH // 2, shoulder_left[1] - ARM_LINE_WIDTH // 2, shoulder_left[0] + ARM_LINE_WIDTH // 2, shoulder_left[1] + ARM_LINE_WIDTH // 2]
|
|
size_right = [shoulder_right[0] - ARM_LINE_WIDTH // 2, shoulder_right[1] - ARM_LINE_WIDTH // 2, shoulder_right[0] + ARM_LINE_WIDTH // 2,
|
|
shoulder_right[1] + ARM_LINE_WIDTH // 2]
|
|
|
|
|
|
if wrist_right[0] <= 1. and wrist_right[1] <= 1.:
|
|
im_arms_right = arms_right
|
|
else:
|
|
wrist_right = extend_arm_mask(wrist_right, elbow_right, 1.2)
|
|
arms_draw_right.line(np.concatenate((shoulder_right, elbow_right, wrist_right)).astype(np.uint16).tolist(), 'white', ARM_LINE_WIDTH, 'curve')
|
|
arms_draw_right.arc(size_right, 0, 360, 'white', ARM_LINE_WIDTH // 2)
|
|
|
|
if wrist_left[0] <= 1. and wrist_left[1] <= 1.:
|
|
im_arms_left = arms_left
|
|
else:
|
|
wrist_left = extend_arm_mask(wrist_left, elbow_left, 1.2)
|
|
arms_draw_left.line(np.concatenate((wrist_left, elbow_left, shoulder_left)).astype(np.uint16).tolist(), 'white', ARM_LINE_WIDTH, 'curve')
|
|
arms_draw_left.arc(size_left, 0, 360, 'white', ARM_LINE_WIDTH // 2)
|
|
|
|
hands_left = np.logical_and(np.logical_not(im_arms_left), arms_left)
|
|
hands_right = np.logical_and(np.logical_not(im_arms_right), arms_right)
|
|
parser_mask_fixed += hands_left + hands_right
|
|
|
|
parser_mask_fixed = np.logical_or(parser_mask_fixed, parse_head)
|
|
parse_mask = cv2.dilate(parse_mask, np.ones((5, 5), np.uint16), iterations=5)
|
|
if category == 'dresses' or category == 'upper_body':
|
|
neck_mask = (parse_array == 18).astype(np.float32)
|
|
neck_mask = cv2.dilate(neck_mask, np.ones((5, 5), np.uint16), iterations=1)
|
|
neck_mask = np.logical_and(neck_mask, np.logical_not(parse_head))
|
|
parse_mask = np.logical_or(parse_mask, neck_mask)
|
|
arm_mask = cv2.dilate(np.logical_or(im_arms_left, im_arms_right).astype('float32'), np.ones((5, 5), np.uint16), iterations=4)
|
|
parse_mask += np.logical_or(parse_mask, arm_mask)
|
|
|
|
parse_mask = np.logical_and(parser_mask_changeable, np.logical_not(parse_mask))
|
|
|
|
parse_mask_total = np.logical_or(parse_mask, parser_mask_fixed)
|
|
inpaint_mask = 1 - parse_mask_total
|
|
img = np.where(inpaint_mask, 255, 0)
|
|
dst = hole_fill(img.astype(np.uint8))
|
|
dst = refine_mask(dst)
|
|
inpaint_mask = dst / 255 * 1
|
|
mask = Image.fromarray(inpaint_mask.astype(np.uint8) * 255)
|
|
mask_gray = Image.fromarray(inpaint_mask.astype(np.uint8) * 127)
|
|
|
|
return mask, mask_gray
|
|
|
|
|
|
def pil_to_binary_mask(pil_image, threshold=0):
|
|
np_image = np.array(pil_image)
|
|
grayscale_image = Image.fromarray(np_image).convert("L")
|
|
binary_mask = np.array(grayscale_image) > threshold
|
|
mask = np.zeros(binary_mask.shape, dtype=np.uint8)
|
|
for i in range(binary_mask.shape[0]):
|
|
for j in range(binary_mask.shape[1]):
|
|
if binary_mask[i,j] == True :
|
|
mask[i,j] = 1
|
|
mask = (mask*255).astype(np.uint8)
|
|
output_mask = Image.fromarray(mask)
|
|
return output_mask |