|
|
|
import torch
|
|
from torch.nn import functional as F
|
|
|
|
from detectron2.structures import Instances, ROIMasks
|
|
|
|
|
|
|
|
def detector_postprocess(
|
|
results: Instances, output_height: int, output_width: int, mask_threshold: float = 0.5
|
|
):
|
|
"""
|
|
Resize the output instances.
|
|
The input images are often resized when entering an object detector.
|
|
As a result, we often need the outputs of the detector in a different
|
|
resolution from its inputs.
|
|
|
|
This function will resize the raw outputs of an R-CNN detector
|
|
to produce outputs according to the desired output resolution.
|
|
|
|
Args:
|
|
results (Instances): the raw outputs from the detector.
|
|
`results.image_size` contains the input image resolution the detector sees.
|
|
This object might be modified in-place.
|
|
output_height, output_width: the desired output resolution.
|
|
Returns:
|
|
Instances: the resized output from the model, based on the output resolution
|
|
"""
|
|
if isinstance(output_width, torch.Tensor):
|
|
|
|
|
|
|
|
output_width_tmp = output_width.float()
|
|
output_height_tmp = output_height.float()
|
|
new_size = torch.stack([output_height, output_width])
|
|
else:
|
|
new_size = (output_height, output_width)
|
|
output_width_tmp = output_width
|
|
output_height_tmp = output_height
|
|
|
|
scale_x, scale_y = (
|
|
output_width_tmp / results.image_size[1],
|
|
output_height_tmp / results.image_size[0],
|
|
)
|
|
results = Instances(new_size, **results.get_fields())
|
|
|
|
if results.has("pred_boxes"):
|
|
output_boxes = results.pred_boxes
|
|
elif results.has("proposal_boxes"):
|
|
output_boxes = results.proposal_boxes
|
|
else:
|
|
output_boxes = None
|
|
assert output_boxes is not None, "Predictions must contain boxes!"
|
|
|
|
output_boxes.scale(scale_x, scale_y)
|
|
output_boxes.clip(results.image_size)
|
|
|
|
results = results[output_boxes.nonempty()]
|
|
|
|
if results.has("pred_masks"):
|
|
if isinstance(results.pred_masks, ROIMasks):
|
|
roi_masks = results.pred_masks
|
|
else:
|
|
|
|
roi_masks = ROIMasks(results.pred_masks[:, 0, :, :])
|
|
results.pred_masks = roi_masks.to_bitmasks(
|
|
results.pred_boxes, output_height, output_width, mask_threshold
|
|
).tensor
|
|
|
|
if results.has("pred_keypoints"):
|
|
results.pred_keypoints[:, :, 0] *= scale_x
|
|
results.pred_keypoints[:, :, 1] *= scale_y
|
|
|
|
return results
|
|
|
|
|
|
def sem_seg_postprocess(result, img_size, output_height, output_width):
|
|
"""
|
|
Return semantic segmentation predictions in the original resolution.
|
|
|
|
The input images are often resized when entering semantic segmentor. Moreover, in same
|
|
cases, they also padded inside segmentor to be divisible by maximum network stride.
|
|
As a result, we often need the predictions of the segmentor in a different
|
|
resolution from its inputs.
|
|
|
|
Args:
|
|
result (Tensor): semantic segmentation prediction logits. A tensor of shape (C, H, W),
|
|
where C is the number of classes, and H, W are the height and width of the prediction.
|
|
img_size (tuple): image size that segmentor is taking as input.
|
|
output_height, output_width: the desired output resolution.
|
|
|
|
Returns:
|
|
semantic segmentation prediction (Tensor): A tensor of the shape
|
|
(C, output_height, output_width) that contains per-pixel soft predictions.
|
|
"""
|
|
result = result[:, : img_size[0], : img_size[1]].expand(1, -1, -1, -1)
|
|
result = F.interpolate(
|
|
result, size=(output_height, output_width), mode="bilinear", align_corners=False
|
|
)[0]
|
|
return result
|
|
|