|
|
|
import torch
|
|
from torch import nn
|
|
from torch.autograd import Function
|
|
from torch.autograd.function import once_differentiable
|
|
from torch.nn.modules.utils import _pair
|
|
|
|
|
|
class _ROIAlignRotated(Function):
|
|
@staticmethod
|
|
def forward(ctx, input, roi, output_size, spatial_scale, sampling_ratio):
|
|
ctx.save_for_backward(roi)
|
|
ctx.output_size = _pair(output_size)
|
|
ctx.spatial_scale = spatial_scale
|
|
ctx.sampling_ratio = sampling_ratio
|
|
ctx.input_shape = input.size()
|
|
output = torch.ops.detectron2.roi_align_rotated_forward(
|
|
input, roi, spatial_scale, output_size[0], output_size[1], sampling_ratio
|
|
)
|
|
return output
|
|
|
|
@staticmethod
|
|
@once_differentiable
|
|
def backward(ctx, grad_output):
|
|
(rois,) = ctx.saved_tensors
|
|
output_size = ctx.output_size
|
|
spatial_scale = ctx.spatial_scale
|
|
sampling_ratio = ctx.sampling_ratio
|
|
bs, ch, h, w = ctx.input_shape
|
|
grad_input = torch.ops.detectron2.roi_align_rotated_backward(
|
|
grad_output,
|
|
rois,
|
|
spatial_scale,
|
|
output_size[0],
|
|
output_size[1],
|
|
bs,
|
|
ch,
|
|
h,
|
|
w,
|
|
sampling_ratio,
|
|
)
|
|
return grad_input, None, None, None, None, None
|
|
|
|
|
|
roi_align_rotated = _ROIAlignRotated.apply
|
|
|
|
|
|
class ROIAlignRotated(nn.Module):
|
|
def __init__(self, output_size, spatial_scale, sampling_ratio):
|
|
"""
|
|
Args:
|
|
output_size (tuple): h, w
|
|
spatial_scale (float): scale the input boxes by this number
|
|
sampling_ratio (int): number of inputs samples to take for each output
|
|
sample. 0 to take samples densely.
|
|
|
|
Note:
|
|
ROIAlignRotated supports continuous coordinate by default:
|
|
Given a continuous coordinate c, its two neighboring pixel indices (in our
|
|
pixel model) are computed by floor(c - 0.5) and ceil(c - 0.5). For example,
|
|
c=1.3 has pixel neighbors with discrete indices [0] and [1] (which are sampled
|
|
from the underlying signal at continuous coordinates 0.5 and 1.5).
|
|
"""
|
|
super(ROIAlignRotated, self).__init__()
|
|
self.output_size = output_size
|
|
self.spatial_scale = spatial_scale
|
|
self.sampling_ratio = sampling_ratio
|
|
|
|
def forward(self, input, rois):
|
|
"""
|
|
Args:
|
|
input: NCHW images
|
|
rois: Bx6 boxes. First column is the index into N.
|
|
The other 5 columns are (x_ctr, y_ctr, width, height, angle_degrees).
|
|
"""
|
|
assert rois.dim() == 2 and rois.size(1) == 6
|
|
orig_dtype = input.dtype
|
|
if orig_dtype == torch.float16:
|
|
input = input.float()
|
|
rois = rois.float()
|
|
output_size = _pair(self.output_size)
|
|
|
|
|
|
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
|
return torch.ops.detectron2.roi_align_rotated_forward(
|
|
input, rois, self.spatial_scale, output_size[0], output_size[1], self.sampling_ratio
|
|
).to(dtype=orig_dtype)
|
|
|
|
return roi_align_rotated(
|
|
input, rois, self.output_size, self.spatial_scale, self.sampling_ratio
|
|
).to(dtype=orig_dtype)
|
|
|
|
def __repr__(self):
|
|
tmpstr = self.__class__.__name__ + "("
|
|
tmpstr += "output_size=" + str(self.output_size)
|
|
tmpstr += ", spatial_scale=" + str(self.spatial_scale)
|
|
tmpstr += ", sampling_ratio=" + str(self.sampling_ratio)
|
|
tmpstr += ")"
|
|
return tmpstr
|
|
|