|
import math
|
|
import torch
|
|
|
|
|
|
def diou_loss(
|
|
boxes1: torch.Tensor,
|
|
boxes2: torch.Tensor,
|
|
reduction: str = "none",
|
|
eps: float = 1e-7,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Distance Intersection over Union Loss (Zhaohui Zheng et. al)
|
|
https://arxiv.org/abs/1911.08287
|
|
Args:
|
|
boxes1, boxes2 (Tensor): box locations in XYXY format, shape (N, 4) or (4,).
|
|
reduction: 'none' | 'mean' | 'sum'
|
|
'none': No reduction will be applied to the output.
|
|
'mean': The output will be averaged.
|
|
'sum': The output will be summed.
|
|
eps (float): small number to prevent division by zero
|
|
"""
|
|
|
|
x1, y1, x2, y2 = boxes1.unbind(dim=-1)
|
|
x1g, y1g, x2g, y2g = boxes2.unbind(dim=-1)
|
|
|
|
|
|
assert (x2 >= x1).all(), "bad box: x1 larger than x2"
|
|
assert (y2 >= y1).all(), "bad box: y1 larger than y2"
|
|
|
|
|
|
xkis1 = torch.max(x1, x1g)
|
|
ykis1 = torch.max(y1, y1g)
|
|
xkis2 = torch.min(x2, x2g)
|
|
ykis2 = torch.min(y2, y2g)
|
|
|
|
intsct = torch.zeros_like(x1)
|
|
mask = (ykis2 > ykis1) & (xkis2 > xkis1)
|
|
intsct[mask] = (xkis2[mask] - xkis1[mask]) * (ykis2[mask] - ykis1[mask])
|
|
union = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g) - intsct + eps
|
|
iou = intsct / union
|
|
|
|
|
|
xc1 = torch.min(x1, x1g)
|
|
yc1 = torch.min(y1, y1g)
|
|
xc2 = torch.max(x2, x2g)
|
|
yc2 = torch.max(y2, y2g)
|
|
diag_len = ((xc2 - xc1) ** 2) + ((yc2 - yc1) ** 2) + eps
|
|
|
|
|
|
x_p = (x2 + x1) / 2
|
|
y_p = (y2 + y1) / 2
|
|
x_g = (x1g + x2g) / 2
|
|
y_g = (y1g + y2g) / 2
|
|
distance = ((x_p - x_g) ** 2) + ((y_p - y_g) ** 2)
|
|
|
|
|
|
loss = 1 - iou + (distance / diag_len)
|
|
if reduction == "mean":
|
|
loss = loss.mean() if loss.numel() > 0 else 0.0 * loss.sum()
|
|
elif reduction == "sum":
|
|
loss = loss.sum()
|
|
|
|
return loss
|
|
|
|
|
|
def ciou_loss(
|
|
boxes1: torch.Tensor,
|
|
boxes2: torch.Tensor,
|
|
reduction: str = "none",
|
|
eps: float = 1e-7,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Complete Intersection over Union Loss (Zhaohui Zheng et. al)
|
|
https://arxiv.org/abs/1911.08287
|
|
Args:
|
|
boxes1, boxes2 (Tensor): box locations in XYXY format, shape (N, 4) or (4,).
|
|
reduction: 'none' | 'mean' | 'sum'
|
|
'none': No reduction will be applied to the output.
|
|
'mean': The output will be averaged.
|
|
'sum': The output will be summed.
|
|
eps (float): small number to prevent division by zero
|
|
"""
|
|
|
|
x1, y1, x2, y2 = boxes1.unbind(dim=-1)
|
|
x1g, y1g, x2g, y2g = boxes2.unbind(dim=-1)
|
|
|
|
|
|
assert (x2 >= x1).all(), "bad box: x1 larger than x2"
|
|
assert (y2 >= y1).all(), "bad box: y1 larger than y2"
|
|
|
|
|
|
xkis1 = torch.max(x1, x1g)
|
|
ykis1 = torch.max(y1, y1g)
|
|
xkis2 = torch.min(x2, x2g)
|
|
ykis2 = torch.min(y2, y2g)
|
|
|
|
intsct = torch.zeros_like(x1)
|
|
mask = (ykis2 > ykis1) & (xkis2 > xkis1)
|
|
intsct[mask] = (xkis2[mask] - xkis1[mask]) * (ykis2[mask] - ykis1[mask])
|
|
union = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g) - intsct + eps
|
|
iou = intsct / union
|
|
|
|
|
|
xc1 = torch.min(x1, x1g)
|
|
yc1 = torch.min(y1, y1g)
|
|
xc2 = torch.max(x2, x2g)
|
|
yc2 = torch.max(y2, y2g)
|
|
diag_len = ((xc2 - xc1) ** 2) + ((yc2 - yc1) ** 2) + eps
|
|
|
|
|
|
x_p = (x2 + x1) / 2
|
|
y_p = (y2 + y1) / 2
|
|
x_g = (x1g + x2g) / 2
|
|
y_g = (y1g + y2g) / 2
|
|
distance = ((x_p - x_g) ** 2) + ((y_p - y_g) ** 2)
|
|
|
|
|
|
w_pred = x2 - x1
|
|
h_pred = y2 - y1
|
|
w_gt = x2g - x1g
|
|
h_gt = y2g - y1g
|
|
v = (4 / (math.pi**2)) * torch.pow((torch.atan(w_gt / h_gt) - torch.atan(w_pred / h_pred)), 2)
|
|
with torch.no_grad():
|
|
alpha = v / (1 - iou + v + eps)
|
|
|
|
|
|
loss = 1 - iou + (distance / diag_len) + alpha * v
|
|
if reduction == "mean":
|
|
loss = loss.mean() if loss.numel() > 0 else 0.0 * loss.sum()
|
|
elif reduction == "sum":
|
|
loss = loss.sum()
|
|
|
|
return loss
|
|
|