|
|
|
import copy
|
|
import logging
|
|
import numpy as np
|
|
from typing import List, Optional, Union
|
|
import torch
|
|
|
|
from detectron2.config import configurable
|
|
|
|
from . import detection_utils as utils
|
|
from . import transforms as T
|
|
|
|
"""
|
|
This file contains the default mapping that's applied to "dataset dicts".
|
|
"""
|
|
|
|
__all__ = ["DatasetMapper"]
|
|
|
|
|
|
class DatasetMapper:
|
|
"""
|
|
A callable which takes a dataset dict in Detectron2 Dataset format,
|
|
and map it into a format used by the model.
|
|
|
|
This is the default callable to be used to map your dataset dict into training data.
|
|
You may need to follow it to implement your own one for customized logic,
|
|
such as a different way to read or transform images.
|
|
See :doc:`/tutorials/data_loading` for details.
|
|
|
|
The callable currently does the following:
|
|
|
|
1. Read the image from "file_name"
|
|
2. Applies cropping/geometric transforms to the image and annotations
|
|
3. Prepare data and annotations to Tensor and :class:`Instances`
|
|
"""
|
|
|
|
@configurable
|
|
def __init__(
|
|
self,
|
|
is_train: bool,
|
|
*,
|
|
augmentations: List[Union[T.Augmentation, T.Transform]],
|
|
image_format: str,
|
|
use_instance_mask: bool = False,
|
|
use_keypoint: bool = False,
|
|
instance_mask_format: str = "polygon",
|
|
keypoint_hflip_indices: Optional[np.ndarray] = None,
|
|
precomputed_proposal_topk: Optional[int] = None,
|
|
recompute_boxes: bool = False,
|
|
):
|
|
"""
|
|
NOTE: this interface is experimental.
|
|
|
|
Args:
|
|
is_train: whether it's used in training or inference
|
|
augmentations: a list of augmentations or deterministic transforms to apply
|
|
image_format: an image format supported by :func:`detection_utils.read_image`.
|
|
use_instance_mask: whether to process instance segmentation annotations, if available
|
|
use_keypoint: whether to process keypoint annotations if available
|
|
instance_mask_format: one of "polygon" or "bitmask". Process instance segmentation
|
|
masks into this format.
|
|
keypoint_hflip_indices: see :func:`detection_utils.create_keypoint_hflip_indices`
|
|
precomputed_proposal_topk: if given, will load pre-computed
|
|
proposals from dataset_dict and keep the top k proposals for each image.
|
|
recompute_boxes: whether to overwrite bounding box annotations
|
|
by computing tight bounding boxes from instance mask annotations.
|
|
"""
|
|
if recompute_boxes:
|
|
assert use_instance_mask, "recompute_boxes requires instance masks"
|
|
|
|
self.is_train = is_train
|
|
self.augmentations = T.AugmentationList(augmentations)
|
|
self.image_format = image_format
|
|
self.use_instance_mask = use_instance_mask
|
|
self.instance_mask_format = instance_mask_format
|
|
self.use_keypoint = use_keypoint
|
|
self.keypoint_hflip_indices = keypoint_hflip_indices
|
|
self.proposal_topk = precomputed_proposal_topk
|
|
self.recompute_boxes = recompute_boxes
|
|
|
|
logger = logging.getLogger(__name__)
|
|
mode = "training" if is_train else "inference"
|
|
logger.info(f"[DatasetMapper] Augmentations used in {mode}: {augmentations}")
|
|
|
|
@classmethod
|
|
def from_config(cls, cfg, is_train: bool = True):
|
|
augs = utils.build_augmentation(cfg, is_train)
|
|
if cfg.INPUT.CROP.ENABLED and is_train:
|
|
augs.insert(0, T.RandomCrop(cfg.INPUT.CROP.TYPE, cfg.INPUT.CROP.SIZE))
|
|
recompute_boxes = cfg.MODEL.MASK_ON
|
|
else:
|
|
recompute_boxes = False
|
|
|
|
ret = {
|
|
"is_train": is_train,
|
|
"augmentations": augs,
|
|
"image_format": cfg.INPUT.FORMAT,
|
|
"use_instance_mask": cfg.MODEL.MASK_ON,
|
|
"instance_mask_format": cfg.INPUT.MASK_FORMAT,
|
|
"use_keypoint": cfg.MODEL.KEYPOINT_ON,
|
|
"recompute_boxes": recompute_boxes,
|
|
}
|
|
|
|
if cfg.MODEL.KEYPOINT_ON:
|
|
ret["keypoint_hflip_indices"] = utils.create_keypoint_hflip_indices(cfg.DATASETS.TRAIN)
|
|
|
|
if cfg.MODEL.LOAD_PROPOSALS:
|
|
ret["precomputed_proposal_topk"] = (
|
|
cfg.DATASETS.PRECOMPUTED_PROPOSAL_TOPK_TRAIN
|
|
if is_train
|
|
else cfg.DATASETS.PRECOMPUTED_PROPOSAL_TOPK_TEST
|
|
)
|
|
return ret
|
|
|
|
def _transform_annotations(self, dataset_dict, transforms, image_shape):
|
|
|
|
for anno in dataset_dict["annotations"]:
|
|
if not self.use_instance_mask:
|
|
anno.pop("segmentation", None)
|
|
if not self.use_keypoint:
|
|
anno.pop("keypoints", None)
|
|
|
|
|
|
annos = [
|
|
utils.transform_instance_annotations(
|
|
obj, transforms, image_shape, keypoint_hflip_indices=self.keypoint_hflip_indices
|
|
)
|
|
for obj in dataset_dict.pop("annotations")
|
|
if obj.get("iscrowd", 0) == 0
|
|
]
|
|
instances = utils.annotations_to_instances(
|
|
annos, image_shape, mask_format=self.instance_mask_format
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.recompute_boxes:
|
|
instances.gt_boxes = instances.gt_masks.get_bounding_boxes()
|
|
dataset_dict["instances"] = utils.filter_empty_instances(instances)
|
|
|
|
def __call__(self, dataset_dict):
|
|
"""
|
|
Args:
|
|
dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format.
|
|
|
|
Returns:
|
|
dict: a format that builtin models in detectron2 accept
|
|
"""
|
|
dataset_dict = copy.deepcopy(dataset_dict)
|
|
|
|
image = utils.read_image(dataset_dict["file_name"], format=self.image_format)
|
|
utils.check_image_size(dataset_dict, image)
|
|
|
|
|
|
if "sem_seg_file_name" in dataset_dict:
|
|
sem_seg_gt = utils.read_image(dataset_dict.pop("sem_seg_file_name"), "L").squeeze(2)
|
|
else:
|
|
sem_seg_gt = None
|
|
|
|
aug_input = T.AugInput(image, sem_seg=sem_seg_gt)
|
|
transforms = self.augmentations(aug_input)
|
|
image, sem_seg_gt = aug_input.image, aug_input.sem_seg
|
|
|
|
image_shape = image.shape[:2]
|
|
|
|
|
|
|
|
dataset_dict["image"] = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1)))
|
|
if sem_seg_gt is not None:
|
|
dataset_dict["sem_seg"] = torch.as_tensor(sem_seg_gt.astype("long"))
|
|
|
|
|
|
|
|
if self.proposal_topk is not None:
|
|
utils.transform_proposals(
|
|
dataset_dict, image_shape, transforms, proposal_topk=self.proposal_topk
|
|
)
|
|
|
|
if not self.is_train:
|
|
|
|
dataset_dict.pop("annotations", None)
|
|
dataset_dict.pop("sem_seg_file_name", None)
|
|
return dataset_dict
|
|
|
|
if "annotations" in dataset_dict:
|
|
self._transform_annotations(dataset_dict, transforms, image_shape)
|
|
|
|
return dataset_dict
|
|
|