FPT-VTON / app.py
basso4's picture
Upload 1459 files
3f9659e verified
raw
history blame
10.9 kB
import spaces
import gradio as gr
import apply_net
import os
import sys
import cv2
sys.path.append('./')
import numpy as np
import argparse
import torch
import torchvision
import pytorch_lightning
from torch import autocast
from torchvision import transforms
from pytorch_lightning import seed_everything
from einops import rearrange
from functools import partial
from omegaconf import OmegaConf
from PIL import Image
from typing import List
import matplotlib.pyplot as plt
from torchvision.transforms.functional import to_pil_image
from utils_mask import get_mask_location
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from ldm.util import instantiate_from_config, get_obj_from_str
from ldm.models.diffusion.ddim import DDIMSampler
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Script for demo model")
parser.add_argument("-b", "--base", type=str, default=r"configs/test_vitonhd.yaml")
parser.add_argument("-c", "--ckpt", type=str, default=r"ckpt/hitonhd.ckpt")
parser.add_argument("-s", "--seed", type=str, default=42)
parser.add_argument("-d", "--ddim", type=str, default=16)
opt = parser.parse_args()
seed_everything(opt.seed)
config = OmegaConf.load(f"{opt.base}")
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = instantiate_from_config(config.model)
model.load_state_dict(torch.hub.load_state_dict_from_url("https://huggingface.co/basso4/hitonhd/resolve/main/hitonhd.ckpt")["state_dict"], strict=False)
model.cuda()
model.eval()
model = model.to(device)
sampler = DDIMSampler(model)
# model = instantiate_from_config(config.model)
# model.load_state_dict(torch.load(opt.ckpt, map_location="cpu")["state_dict"], strict=False)
# model.cuda()
# model.eval()
# device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
# model = model.to(device)
# sampler = DDIMSampler(model)
precision_scope = autocast
@spaces.GPU
def start_tryon(dict_human,garm_img):
#load human image
human_img = dict_human['background'].convert("RGB").resize((768,1024))
#mask
tensor_transfrom = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
parsing_model = Parsing(0)
openose_model = OpenPose(0)
openose_model.preprocessor.body_estimation.model.to(device)
keypoints = openose_model(human_img.resize((384,512)))
model_parse, _ = parsing_model(human_img.resize((384,512)))
mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
mask_cv = mask
mask = mask.resize((768, 1024))
mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
mask_gray = to_pil_image((mask_gray+1.0)/2.0)
#densepose
human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
args = apply_net.create_argument_parser().parse_args(('show',
'./configs/configs_densepose/densepose_rcnn_R_50_FPN_s1x.yaml',
'https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl',
'dp_segm', '-v',
'--opts',
'MODEL.DEVICE',
'cuda'))
# verbosity = getattr(args, "verbosity", None)
pose_img = args.func(args,human_img_arg)
pose_img = pose_img[:,:,::-1]
pose_img = Image.fromarray(pose_img).resize((768,1024))
#preprocessing image
human_img = human_img.convert("RGB").resize((512, 512))
human_img = torchvision.transforms.ToTensor()(human_img)
garm_img = garm_img.convert("RGB").resize((224, 224))
garm_img = torchvision.transforms.ToTensor()(garm_img)
mask = mask.convert("L").resize((512,512))
mask = torchvision.transforms.ToTensor()(mask)
mask = 1-mask
pose_img = pose_img.convert("RGB").resize((512, 512))
pose_img = torchvision.transforms.ToTensor()(pose_img)
#Normalize
human_img = torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(human_img)
garm_img = torchvision.transforms.Normalize((0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711))(garm_img)
pose_img = torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(pose_img)
#create inpaint & hint
inpaint = human_img * mask
hint = torchvision.transforms.Resize((512, 512))(garm_img)
hint = torch.cat((hint, pose_img), dim=0)
# {"human_img": human_img, # [3, 512, 512]
# "inpaint_image": inpaint, # [3, 512, 512]
# "inpaint_mask": mask, # [1, 512, 512]
# "garm_img": garm_img, # [3, 224, 224]
# "hint": hint, # [6, 512, 512]
# }
with torch.no_grad():
with precision_scope("cuda"):
#loading data
inpaint = inpaint.unsqueeze(0).to(torch.float16).to(device)
reference = garm_img.unsqueeze(0).to(torch.float16).to(device)
mask = mask.unsqueeze(0).to(torch.float16).to(device)
hint = hint.unsqueeze(0).to(torch.float16).to(device)
truth = human_img.unsqueeze(0).to(torch.float16).to(device)
#data preprocessing
encoder_posterior_inpaint = model.first_stage_model.encode(inpaint)
z_inpaint = model.scale_factor * (encoder_posterior_inpaint.sample()).detach()
mask_resize = torchvision.transforms.Resize([z_inpaint.shape[-2],z_inpaint.shape[-1]])(mask)
test_model_kwargs = {}
test_model_kwargs['inpaint_image'] = z_inpaint
test_model_kwargs['inpaint_mask'] = mask_resize
shape = (model.channels, model.image_size, model.image_size)
#predict
samples, _ = sampler.sample(S=opt.ddim,
batch_size=1,
shape=shape,
pose=hint,
conditioning=reference,
verbose=False,
eta=0,
test_model_kwargs=test_model_kwargs)
samples = 1. / model.scale_factor * samples
x_samples = model.first_stage_model.decode(samples[:,:4,:,:])
x_samples_ddim = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy()
x_checked_image=x_samples_ddim
x_checked_image_torch = torch.from_numpy(x_checked_image).permute(0, 3, 1, 2)
x_checked_image_torch = torch.nn.functional.interpolate(x_checked_image_torch.float(), size=[512,384])
#apply seamlessClone technique here
#img_base
dict_human = dict_human.convert("RGB").resize((384, 512))
dict_human = np.array(dict_human)
dict_human = cv2.cvtColor(dict_human, cv2.COLOR_RGB2BGR)
#img_output
img_cv = rearrange(x_checked_image_torch[0], 'c h w -> h w c').cpu().numpy()
img_cv = (img_cv * 255).astype(np.uint8)
img_cv = cv2.cvtColor(img_cv, cv2.COLOR_RGB2BGR)
#mask
mask_cv = mask_cv.convert("L").resize((384,512))
mask_cv = np.array(mask_cv)
mask_cv = 255-mask_cv
img_C = cv2.seamlessClone(dict_human, img_cv, mask_cv, (192,256), cv2.NORMAL_CLONE)
return img_C, mask_gray
example_path = os.path.join(os.path.dirname(__file__), 'example')
garm_list = os.listdir(os.path.join(example_path,"cloth"))
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
human_list = os.listdir(os.path.join(example_path,"human"))
human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
human_ex_list = []
for ex_human in human_list_path:
ex_dict= {}
ex_dict['background'] = ex_human
ex_dict['layers'] = None
ex_dict['composite'] = None
human_ex_list.append(ex_dict)
##default human
image_blocks = gr.Blocks().queue()
with image_blocks as demo:
gr.Markdown("## FPT_VTON πŸ‘•πŸ‘”πŸ‘š")
gr.Markdown("Virtual Try-on with your image and garment image")
with gr.Row():
with gr.Column():
imgs = gr.ImageEditor(sources='upload', type="pil", label='Human Picture or use Examples below', interactive=True)
example = gr.Examples(
inputs=imgs,
examples_per_page=10,
examples=human_list_path
)
with gr.Column():
garm_img = gr.Image(label="Garment", sources='upload', type="pil")
example = gr.Examples(
inputs=garm_img,
examples_per_page=8,
examples=garm_list_path
)
with gr.Column():
image_out_c = gr.Image(label="Output", elem_id="output-img",show_download_button=True)
try_button = gr.Button(value="Try-on")
# with gr.Column():
# image_out_c = gr.Image(label="Output", elem_id="output-img",show_download_button=False)
with gr.Column():
masked_img = gr.Image(label="Masked image output", elem_id="masked_img", show_download_button=True)
try_button.click(fn=start_tryon, inputs=[imgs,garm_img], outputs=[image_out_c,masked_img], api_name='tryon')
image_blocks.launch()