File size: 10,883 Bytes
3f9659e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import spaces
import gradio as gr
import apply_net
import os
import sys
import cv2
sys.path.append('./')
import numpy as np
import argparse
import torch
import torchvision
import pytorch_lightning
from torch import autocast
from torchvision import transforms
from pytorch_lightning import seed_everything
from einops import rearrange
from functools import partial
from omegaconf import OmegaConf
from PIL import Image
from typing import List
import matplotlib.pyplot as plt
from torchvision.transforms.functional import to_pil_image
from utils_mask import get_mask_location
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
from ldm.util import instantiate_from_config, get_obj_from_str
from ldm.models.diffusion.ddim import DDIMSampler
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Script for demo model")
parser.add_argument("-b", "--base", type=str, default=r"configs/test_vitonhd.yaml")
parser.add_argument("-c", "--ckpt", type=str, default=r"ckpt/hitonhd.ckpt")
parser.add_argument("-s", "--seed", type=str, default=42)
parser.add_argument("-d", "--ddim", type=str, default=16)
opt = parser.parse_args()
seed_everything(opt.seed)
config = OmegaConf.load(f"{opt.base}")
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = instantiate_from_config(config.model)
model.load_state_dict(torch.hub.load_state_dict_from_url("https://huggingface.co/basso4/hitonhd/resolve/main/hitonhd.ckpt")["state_dict"], strict=False)
model.cuda()
model.eval()
model = model.to(device)
sampler = DDIMSampler(model)
# model = instantiate_from_config(config.model)
# model.load_state_dict(torch.load(opt.ckpt, map_location="cpu")["state_dict"], strict=False)
# model.cuda()
# model.eval()
# device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
# model = model.to(device)
# sampler = DDIMSampler(model)
precision_scope = autocast
@spaces.GPU
def start_tryon(dict_human,garm_img):
#load human image
human_img = dict_human['background'].convert("RGB").resize((768,1024))
#mask
tensor_transfrom = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
parsing_model = Parsing(0)
openose_model = OpenPose(0)
openose_model.preprocessor.body_estimation.model.to(device)
keypoints = openose_model(human_img.resize((384,512)))
model_parse, _ = parsing_model(human_img.resize((384,512)))
mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
mask_cv = mask
mask = mask.resize((768, 1024))
mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
mask_gray = to_pil_image((mask_gray+1.0)/2.0)
#densepose
human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
args = apply_net.create_argument_parser().parse_args(('show',
'./configs/configs_densepose/densepose_rcnn_R_50_FPN_s1x.yaml',
'https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl',
'dp_segm', '-v',
'--opts',
'MODEL.DEVICE',
'cuda'))
# verbosity = getattr(args, "verbosity", None)
pose_img = args.func(args,human_img_arg)
pose_img = pose_img[:,:,::-1]
pose_img = Image.fromarray(pose_img).resize((768,1024))
#preprocessing image
human_img = human_img.convert("RGB").resize((512, 512))
human_img = torchvision.transforms.ToTensor()(human_img)
garm_img = garm_img.convert("RGB").resize((224, 224))
garm_img = torchvision.transforms.ToTensor()(garm_img)
mask = mask.convert("L").resize((512,512))
mask = torchvision.transforms.ToTensor()(mask)
mask = 1-mask
pose_img = pose_img.convert("RGB").resize((512, 512))
pose_img = torchvision.transforms.ToTensor()(pose_img)
#Normalize
human_img = torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(human_img)
garm_img = torchvision.transforms.Normalize((0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711))(garm_img)
pose_img = torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(pose_img)
#create inpaint & hint
inpaint = human_img * mask
hint = torchvision.transforms.Resize((512, 512))(garm_img)
hint = torch.cat((hint, pose_img), dim=0)
# {"human_img": human_img, # [3, 512, 512]
# "inpaint_image": inpaint, # [3, 512, 512]
# "inpaint_mask": mask, # [1, 512, 512]
# "garm_img": garm_img, # [3, 224, 224]
# "hint": hint, # [6, 512, 512]
# }
with torch.no_grad():
with precision_scope("cuda"):
#loading data
inpaint = inpaint.unsqueeze(0).to(torch.float16).to(device)
reference = garm_img.unsqueeze(0).to(torch.float16).to(device)
mask = mask.unsqueeze(0).to(torch.float16).to(device)
hint = hint.unsqueeze(0).to(torch.float16).to(device)
truth = human_img.unsqueeze(0).to(torch.float16).to(device)
#data preprocessing
encoder_posterior_inpaint = model.first_stage_model.encode(inpaint)
z_inpaint = model.scale_factor * (encoder_posterior_inpaint.sample()).detach()
mask_resize = torchvision.transforms.Resize([z_inpaint.shape[-2],z_inpaint.shape[-1]])(mask)
test_model_kwargs = {}
test_model_kwargs['inpaint_image'] = z_inpaint
test_model_kwargs['inpaint_mask'] = mask_resize
shape = (model.channels, model.image_size, model.image_size)
#predict
samples, _ = sampler.sample(S=opt.ddim,
batch_size=1,
shape=shape,
pose=hint,
conditioning=reference,
verbose=False,
eta=0,
test_model_kwargs=test_model_kwargs)
samples = 1. / model.scale_factor * samples
x_samples = model.first_stage_model.decode(samples[:,:4,:,:])
x_samples_ddim = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy()
x_checked_image=x_samples_ddim
x_checked_image_torch = torch.from_numpy(x_checked_image).permute(0, 3, 1, 2)
x_checked_image_torch = torch.nn.functional.interpolate(x_checked_image_torch.float(), size=[512,384])
#apply seamlessClone technique here
#img_base
dict_human = dict_human.convert("RGB").resize((384, 512))
dict_human = np.array(dict_human)
dict_human = cv2.cvtColor(dict_human, cv2.COLOR_RGB2BGR)
#img_output
img_cv = rearrange(x_checked_image_torch[0], 'c h w -> h w c').cpu().numpy()
img_cv = (img_cv * 255).astype(np.uint8)
img_cv = cv2.cvtColor(img_cv, cv2.COLOR_RGB2BGR)
#mask
mask_cv = mask_cv.convert("L").resize((384,512))
mask_cv = np.array(mask_cv)
mask_cv = 255-mask_cv
img_C = cv2.seamlessClone(dict_human, img_cv, mask_cv, (192,256), cv2.NORMAL_CLONE)
return img_C, mask_gray
example_path = os.path.join(os.path.dirname(__file__), 'example')
garm_list = os.listdir(os.path.join(example_path,"cloth"))
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
human_list = os.listdir(os.path.join(example_path,"human"))
human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
human_ex_list = []
for ex_human in human_list_path:
ex_dict= {}
ex_dict['background'] = ex_human
ex_dict['layers'] = None
ex_dict['composite'] = None
human_ex_list.append(ex_dict)
##default human
image_blocks = gr.Blocks().queue()
with image_blocks as demo:
gr.Markdown("## FPT_VTON πππ")
gr.Markdown("Virtual Try-on with your image and garment image")
with gr.Row():
with gr.Column():
imgs = gr.ImageEditor(sources='upload', type="pil", label='Human Picture or use Examples below', interactive=True)
example = gr.Examples(
inputs=imgs,
examples_per_page=10,
examples=human_list_path
)
with gr.Column():
garm_img = gr.Image(label="Garment", sources='upload', type="pil")
example = gr.Examples(
inputs=garm_img,
examples_per_page=8,
examples=garm_list_path
)
with gr.Column():
image_out_c = gr.Image(label="Output", elem_id="output-img",show_download_button=True)
try_button = gr.Button(value="Try-on")
# with gr.Column():
# image_out_c = gr.Image(label="Output", elem_id="output-img",show_download_button=False)
with gr.Column():
masked_img = gr.Image(label="Masked image output", elem_id="masked_img", show_download_button=True)
try_button.click(fn=start_tryon, inputs=[imgs,garm_img], outputs=[image_out_c,masked_img], api_name='tryon')
image_blocks.launch()
|