File size: 8,917 Bytes
b6bc598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b001c5
 
b6bc598
 
 
 
 
 
e9e38c2
 
 
 
 
 
b6bc598
 
 
 
4f61238
 
 
 
b6bc598
 
 
51908c1
b6bc598
 
 
 
 
 
4f61238
 
 
b6bc598
4f61238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6bc598
51908c1
c7593af
4f61238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9e38c2
 
 
 
b6bc598
 
 
 
c7593af
b6bc598
 
 
 
 
 
 
 
 
 
 
 
f5e154d
b7d7aaa
 
f5e154d
b7d7aaa
f5e154d
b6bc598
 
 
 
 
 
 
 
 
 
 
8708085
b6bc598
 
0b001c5
8708085
5f754d3
68c72a6
51908c1
 
 
0fc63e3
 
 
 
51908c1
 
68c72a6
51908c1
68c72a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2d45cf
 
 
 
04c098b
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import evaluate
import datasets
import motmetrics as mm
import numpy as np

_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}\
@article{milan2016mot16,
  title={MOT16: A benchmark for multi-object tracking},
  author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad},
  journal={arXiv preprint arXiv:1603.00831},
  year={2016}
}
"""

_DESCRIPTION = """\
The MOT Metrics module is designed to evaluate multi-object tracking (MOT) 
algorithms by computing various metrics based on predicted and ground truth bounding 
boxes. It serves as a crucial tool in assessing the performance of MOT systems, 
aiding in the iterative improvement of tracking algorithms."""


_KWARGS_DESCRIPTION = """

Calculates how good are predictions given some references, using certain scores
Args:
    predictions: list of predictions to score. Each predictions
        should be a string with tokens separated by spaces.
    references: list of reference for each prediction. Each
        reference should be a string with tokens separated by spaces.
    max_iou (`float`, *optional*):
        If specified, this is the minimum Intersection over Union (IoU) threshold to consider a detection as a true positive.
        Default is 0.5.
Returns:
    summary: pandas.DataFrame with the following columns:
        - idf1 (IDF1 Score): The F1 score for the identity assignment, computed as 2 * (IDP * IDR) / (IDP + IDR).
        - idp (ID Precision): Identity Precision, representing the ratio of correctly assigned identities to the total number of predicted identities.
        - idr (ID Recall): Identity Recall, representing the ratio of correctly assigned identities to the total number of ground truth identities.
        - recall: Recall, computed as the ratio of the number of correctly tracked objects to the total number of ground truth objects.
        - precision: Precision, computed as the ratio of the number of correctly tracked objects to the total number of predicted objects.
        - num_unique_objects: Total number of unique objects in the ground truth.
        - mostly_tracked: Number of objects that are mostly tracked throughout the sequence.
        - partially_tracked: Number of objects that are partially tracked but not mostly tracked.
        - mostly_lost: Number of objects that are mostly lost throughout the sequence.
        - num_false_positives: Number of false positive detections (predicted objects not present in the ground truth).
        - num_misses: Number of missed detections (ground truth objects not detected in the predictions).
        - num_switches: Number of identity switches.
        - num_fragmentations: Number of fragmented objects (objects that are broken into multiple tracks).
        - mota (MOTA - Multiple Object Tracking Accuracy): Overall tracking accuracy, computed as 1 - ((num_false_positives + num_misses + num_switches) / num_unique_objects).
        - motp (MOTP - Multiple Object Tracking Precision): Average precision of the object localization, computed as the mean of the localization errors of correctly detected objects.
        - num_transfer: Number of track transfers.
        - num_ascend: Number of ascended track IDs.
        - num_migrate: Number of track ID migrations.

Examples:
    >>> import numpy as np
    >>> module = evaluate.load("bascobasculino/mot-metrics")

    >>> predicted =[
            [1,1,10,20,30,40,0.85],
            [1,2,50,60,70,80,0.92],
            [1,3,80,90,100,110,0.75],
            [2,1,15,25,35,45,0.78],
            [2,2,55,65,75,85,0.95],
            [3,1,20,30,40,50,0.88],
            [3,2,60,70,80,90,0.82],
            [4,1,25,35,45,55,0.91],
            [4,2,65,75,85,95,0.89]
        ]

    >>> ground_truth = [
            [1, 1, 10, 20, 30, 40],
            [1, 2, 50, 60, 70, 80],
            [1, 3, 85, 95, 105, 115],
            [2, 1, 15, 25, 35, 45],
            [2, 2, 55, 65, 75, 85],
            [3, 1, 20, 30, 40, 50],
            [3, 2, 60, 70, 80, 90],
            [4, 1, 25, 35, 45, 55],
            [5, 1, 30, 40, 50, 60],
            [5, 2, 70, 80, 90, 100]
        ]
    >>> predicted = [np.array(a) for a in predicted]
    >>> ground_truth = [np.array(a) for a in ground_truth]

    >>> results = module._compute(predictions=predicted, references=ground_truth, max_iou=0.5)
    >>> print(results)
    {'idf1': 0.8421052631578947, 'idp': 0.8888888888888888, 'idr': 0.8, 'recall': 0.8, 'precision': 0.8888888888888888,
    'num_unique_objects': 3,'mostly_tracked': 2, 'partially_tracked': 1, 'mostly_lost': 0, 'num_false_positives': 1, 
    'num_misses': 2, 'num_switches': 0, 'num_fragmentations': 0, 'mota': 0.7, 'motp': 0.02981870229007634,
    'num_transfer': 0, 'num_ascend': 0, 'num_migrate': 0}
"""


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class MotMetrics(evaluate.Metric):
    """TODO: Short description of my evaluation module."""

    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features({
                "predictions": datasets.Sequence(
                                datasets.Sequence(datasets.Value("float"))
                            ),
                "references": datasets.Sequence(
                                datasets.Sequence(datasets.Value("float"))
                            )
            }),
            # Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"]
        )

    def _download_and_prepare(self, dl_manager):
        """Optional: download external resources useful to compute the scores"""
        # TODO: Download external resources if needed
        pass

    def _compute(self, predictions, references, max_iou: float = 0.5):
        """Returns the scores"""
        # TODO: Compute the different scores of the module

        return calculate(predictions, references, max_iou)

def calculate(predictions, references, max_iou: float = 0.5):
    """Returns the scores"""
    try: 
        np_predictions = np.array(predictions)
    except:
        raise ValueError("The predictions should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height, confidence]")
    
    try:
        np_references = np.array(references)
    except:
        raise ValueError("The references should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height]")
    
    if np_predictions.shape[1] != 7:
        raise ValueError("The predictions should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height, confidence]")
    if np_references.shape[1] != 6:
        raise ValueError("The references should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height]")

    if np_predictions[:, 0].min() <= 0:
        raise ValueError("The frame number in the predictions should be a positive integer")
    if np_references[:, 0].min() <= 0:
        raise ValueError("The frame number in the references should be a positive integer")


    num_frames = max(np_references[:, 0].max(), np_predictions[:, 0].max())

    acc = mm.MOTAccumulator(auto_id=True)
    for i in range(1, num_frames+1):
        preds = np_predictions[np_predictions[:, 0] == i, 1:6]
        refs = np_references[np_references[:, 0] == i, 1:6]
        C = mm.distances.iou_matrix(refs[:,1:], preds[:,1:], max_iou = max_iou)
        acc.update(refs[:,0].astype('int').tolist(), preds[:,0].astype('int').tolist(), C)

    mh = mm.metrics.create()
    summary = mh.compute(acc).to_dict()
    for key in summary:
        summary[key] = summary[key][0]
    
    return summary