|
import torch |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
from transformers.pipelines.audio_utils import ffmpeg_read |
|
import gradio as gr |
|
from transformers import WhisperForConditionalGeneration, WhisperProcessor |
|
from transformers.models.whisper.tokenization_whisper import LANGUAGES |
|
from transformers.pipelines.audio_utils import ffmpeg_read |
|
|
|
model_id = "openai/whisper-large-v2" |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
LANGUANGE_MAP = { |
|
0: 'Arabic', |
|
1: 'Basque', |
|
2: 'Breton', |
|
3: 'Catalan', |
|
4: 'Chinese_China', |
|
5: 'Chinese_Hongkong', |
|
6: 'Chinese_Taiwan', |
|
7: 'Chuvash', |
|
8: 'Czech', |
|
9: 'Dhivehi', |
|
10: 'Dutch', |
|
11: 'English', |
|
12: 'Esperanto', |
|
13: 'Estonian', |
|
14: 'French', |
|
15: 'Frisian', |
|
16: 'Georgian', |
|
17: 'German', |
|
18: 'Greek', |
|
19: 'Hakha_Chin', |
|
20: 'Indonesian', |
|
21: 'Interlingua', |
|
22: 'Italian', |
|
23: 'Japanese', |
|
24: 'Kabyle', |
|
25: 'Kinyarwanda', |
|
26: 'Kyrgyz', |
|
27: 'Latvian', |
|
28: 'Maltese', |
|
29: 'Mongolian', |
|
30: 'Persian', |
|
31: 'Polish', |
|
32: 'Portuguese', |
|
33: 'Romanian', |
|
34: 'Romansh_Sursilvan', |
|
35: 'Russian', |
|
36: 'Sakha', |
|
37: 'Slovenian', |
|
38: 'Spanish', |
|
39: 'Swedish', |
|
40: 'Tamil', |
|
41: 'Tatar', |
|
42: 'Turkish', |
|
43: 'Ukranian', |
|
44: 'Welsh' |
|
} |
|
|
|
|
|
from pytube import YouTube |
|
import whisper |
|
|
|
|
|
def transcribe(Microphone, File_Upload): |
|
warn_output = "" |
|
if (Microphone is not None) and (File_Upload is not None): |
|
warn_output = "WARNING: You've uploaded an audio file and used the microphone. " \ |
|
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" |
|
file = Microphone |
|
|
|
elif (Microphone is None) and (File_Upload is None): |
|
return "ERROR: You have to either use the microphone or upload an audio file" |
|
|
|
elif Microphone is not None: |
|
file = Microphone |
|
else: |
|
file = File_Upload |
|
|
|
|
|
language = None |
|
|
|
options = whisper.DecodingOptions(without_timestamps=True) |
|
|
|
loaded_model = whisper.load_model("base") |
|
transcript = loaded_model.transcribe(file, language=language) |
|
|
|
return detect_language(transcript["text"]) |
|
|
|
def detect_language(sentence): |
|
|
|
model_ckpt = "barto17/language-detection-fine-tuned-on-xlm-roberta-base" |
|
model = AutoModelForSequenceClassification.from_pretrained(model_ckpt) |
|
tokenizer = AutoTokenizer.from_pretrained(model_ckpt) |
|
tokenized_sentence = tokenizer(sentence, return_tensors='pt') |
|
output = model(**tokenized_sentence) |
|
predictions = torch.nn.functional.softmax(output.logits, dim=-1) |
|
probability, pred_idx = torch.max(predictions, dim=-1) |
|
language = LANGUANGE_MAP[pred_idx.item()] |
|
return sentence, language, probability.item() |
|
|
|
|
|
""" |
|
processor = WhisperProcessor.from_pretrained(model_id) |
|
model = WhisperForConditionalGeneration.from_pretrained(model_id) |
|
model.eval() |
|
model.to(device) |
|
|
|
|
|
bos_token_id = processor.tokenizer.all_special_ids[-106] |
|
decoder_input_ids = torch.tensor([bos_token_id]).to(device) |
|
|
|
|
|
def process_audio_file(file, sampling_rate): |
|
with open(file, "rb") as f: |
|
inputs = f.read() |
|
|
|
audio = ffmpeg_read(inputs, sampling_rate) |
|
print(audio) |
|
return audio |
|
|
|
def transcribe(Microphone, File_Upload): |
|
|
|
warn_output = "" |
|
if (Microphone is not None) and (File_Upload is not None): |
|
warn_output = "WARNING: You've uploaded an audio file and used the microphone. " \ |
|
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" |
|
file = Microphone |
|
|
|
elif (Microphone is None) and (File_Upload is None): |
|
return "ERROR: You have to either use the microphone or upload an audio file" |
|
|
|
elif Microphone is not None: |
|
file = Microphone |
|
else: |
|
file = File_Upload |
|
|
|
sampling_rate = processor.feature_extractor.sampling_rate |
|
|
|
|
|
audio_data = process_audio_file(file, sampling_rate) |
|
|
|
input_features = processor(audio_data, return_tensors="pt").input_features |
|
|
|
with torch.no_grad(): |
|
logits = model.forward(input_features.to(device), decoder_input_ids=decoder_input_ids).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
transcription = processor.decode(pred_ids[0]) |
|
|
|
language, probability = detect_language(transcription) |
|
|
|
return transcription.capitalize(), language, probability |
|
""" |
|
|
|
examples=['sample1.mp3', 'sample2.mp3', 'sample3.mp3'] |
|
examples = [[f"./{f}"] for f in examples] |
|
|
|
outputs=gr.outputs.Label(label="Language detected:") |
|
article = """ |
|
Fine-tuned on xlm-roberta-base model.\n |
|
Supported languages:\n |
|
'Arabic', 'Basque', 'Breton', 'Catalan', 'Chinese_China', 'Chinese_Hongkong', 'Chinese_Taiwan', 'Chuvash', 'Czech', |
|
'Dhivehi', 'Dutch', 'English', 'Esperanto', 'Estonian', 'French', 'Frisian', 'Georgian', 'German', 'Greek', 'Hakha_Chin', |
|
'Indonesian', 'Interlingua', 'Italian', 'Japanese', 'Kabyle', 'Kinyarwanda', 'Kyrgyz', 'Latvian', 'Maltese', |
|
'Mangolian', 'Persian', 'Polish', 'Portuguese', 'Romanian', 'Romansh_Sursilvan', 'Russian', 'Sakha', 'Slovenian', |
|
'Spanish', 'Swedish', 'Tamil', 'Tatar', 'Turkish', 'Ukranian', 'Welsh' |
|
""" |
|
|
|
gr.Interface( |
|
fn=transcribe, |
|
inputs=[ |
|
gr.inputs.Audio(source="microphone", type='filepath', optional=True), |
|
gr.inputs.Audio(source="upload", type='filepath', optional=True), |
|
], |
|
|
|
outputs=[ |
|
gr.outputs.Textbox(label="Transcription"), |
|
gr.outputs.Textbox(label="Language"), |
|
gr.Number(label="Probability"), |
|
], |
|
|
|
verbose=True, |
|
examples = examples, |
|
title="Language Identification from Audio", |
|
description="Detect the Language from Audio.", |
|
article=article, |
|
theme="huggingface" |
|
).launch() |
|
|
|
|
|
|
|
|