ASR_Faroese / app.py
barbaroo's picture
Update app.py
f7276a9
raw
history blame
2.55 kB
import gradio as gr
import time
from transformers import pipeline
import torch
import ffmpeg # Make sure it's ffmpeg-python
# Check if GPU is available
use_gpu = torch.cuda.is_available()
# Configure the pipeline to use the GPU if available
if use_gpu:
p = pipeline("automatic-speech-recognition",
model="carlosdanielhernandezmena/wav2vec2-large-xlsr-53-faroese-100h", device=0)
else:
p = pipeline("automatic-speech-recognition",
model="carlosdanielhernandezmena/wav2vec2-large-xlsr-53-faroese-100h")
def extract_audio_from_m3u8(url):
try:
output_file = "output_audio.aac"
ffmpeg.input(url).output(output_file).run(overwrite_output=True)
return output_file
except Exception as e:
return f"An error occurred: {e}"
def transcribe_function(audio, state, uploaded_audio, m3u8_url):
if m3u8_url:
audio = extract_audio_from_m3u8(m3u8_url)
if uploaded_audio is not None:
audio = uploaded_audio
if not audio:
return {state_var: state, transcription_var: state} # Return a meaningful message
try:
time.sleep(3)
text = p(audio, chunk_length_s= 50)["text"]
state += text + "\n"
return {state_var: state, transcription_var: state}
except Exception as e:
return {transcription_var: "An error occurred during transcription.", state_var: state} # Handle other exceptions
# ... [most of your code remains unchanged]
def reset_output(transcription, state):
"""Function to reset the state to an empty string."""
return "", ""
with gr.Blocks() as demo:
state_var = gr.State("")
with gr.Row():
with gr.Column():
microphone = gr.Audio(source="microphone", type="filepath", label="Microphone")
uploaded_audio = gr.Audio(label="Upload Audio File", type="filepath", source="upload")
m3u8_url = gr.Textbox(label="m3u8 URL | E.g.: from kvf.fo or logting.fo")
with gr.Column():
transcription_var = gr.Textbox(type="text", label="Transcription", readonly=True)
with gr.Row():
transcribe_button = gr.Button("Transcribe")
reset_button = gr.Button("Reset output")
transcribe_button.click(
transcribe_function,
[microphone, state_var, uploaded_audio, m3u8_url],
[transcription_var, state_var]
)
reset_button.click(
reset_output,
[transcription_var, state_var],
[transcription_var, state_var]
)
demo.launch()