ASR_Faroese / app.py
barbaroo's picture
Add new input m3u8 URL | E.g.: from kvf.fo or logting.fo (#1)
0659665
raw
history blame
1.82 kB
import gradio as gr
import time
from transformers import pipeline
import torch
import ffmpeg # Make sure it's ffmpeg-python
# Check if GPU is available
use_gpu = torch.cuda.is_available()
# Configure the pipeline to use the GPU if available
if use_gpu:
p = pipeline("automatic-speech-recognition",
model="carlosdanielhernandezmena/wav2vec2-large-xlsr-53-faroese-100h", device=0)
else:
p = pipeline("automatic-speech-recognition",
model="carlosdanielhernandezmena/wav2vec2-large-xlsr-53-faroese-100h")
def extract_audio_from_m3u8(url):
try:
output_file = "output_audio.aac"
ffmpeg.input(url).output(output_file).run(overwrite_output=True)
return output_file
except Exception as e:
return f"An error occurred: {e}"
def transcribe(audio, state="", uploaded_audio=None, m3u8_url=""):
if m3u8_url:
audio = extract_audio_from_m3u8(m3u8_url)
if uploaded_audio is not None:
audio = uploaded_audio
if not audio:
return state, state # Return a meaningful message
try:
time.sleep(3)
text = p(audio, chunk_length_s= 50)["text"]
state += text + "\n"
return state, state
except Exception as e:
return "An error occurred during transcription.", state # Handle other exceptions
def reset(state):
state = ''
return state
demo = gr.Interface(
fn=transcribe,
inputs=[
gr.components.Audio(source="microphone", type="filepath"),
'state',
gr.components.Audio(label="Upload Audio File", type="filepath", source="upload"),
gr.components.Textbox(label="m3u8 URL | E.g.: from kvf.fo or logting.fo")
],
outputs=[
gr.components.Textbox(type="text"),
"state"
],
live=True)
demo.launch()