File size: 1,274 Bytes
7b18d60
 
502159a
eb134bd
7b18d60
68a9c43
 
 
eb134bd
68a9c43
 
 
a4f93b2
68a9c43
 
a4f93b2
eb134bd
7b18d60
ebd3d99
 
65129d9
ebd3d99
6aaee7d
ebd3d99
eb134bd
542278b
eb134bd
ebd3d99
 
 
 
eb134bd
 
 
92d60f9
7b18d60
 
eb134bd
65129d9
eb134bd
7b18d60
 
 
fe6ca48
7b18d60
77f489c
92d60f9
 
ad0f8bc
92d60f9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import gradio as gr
import time
from transformers import pipeline
import torch

# Check if GPU is available
use_gpu = torch.cuda.is_available()


# Configure the pipeline to use the GPU if available
if use_gpu:
    p = pipeline("automatic-speech-recognition", 
             model="carlosdanielhernandezmena/wav2vec2-large-xlsr-53-faroese-100h", device=0)
else:
    p = pipeline("automatic-speech-recognition", 
             model="carlosdanielhernandezmena/wav2vec2-large-xlsr-53-faroese-100h")
    

def transcribe(audio, state="", uploaded_audio=None):
    if uploaded_audio is not None:
        audio = uploaded_audio
    if not audio:
        return state, state  # Return a meaningful message
    try:
        time.sleep(3)
        text = p(audio, chunk_length_s= 50)["text"]
        state += text + "\n"
        return state, state
    except Exception as e:
        return "An error occurred during transcription.", state  # Handle other exceptions




demo = gr.Interface(
    fn=transcribe, 
    inputs=[
        gr.inputs.Audio(source="microphone", type="filepath"),
        'state',
        gr.inputs.Audio(label="Upload Audio File", type="filepath", source="upload")
    ],
    outputs=[
        "textbox",
        "state"
    ],

    live=True)


demo.launch()