Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,36 +6,38 @@ from gradio.mix import Parallel, Series
|
|
6 |
#import torch.nn.functional as F
|
7 |
from aitextgen import aitextgen
|
8 |
|
9 |
-
|
10 |
|
11 |
-
|
12 |
-
dataset = load_dataset("bananabot/engMollywoodSummaries")
|
13 |
-
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
|
14 |
|
15 |
-
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
return tokenizer(examples["text"], padding="max_length", truncation=True)
|
19 |
-
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
|
25 |
-
def compute_metrics(eval_pred):
|
26 |
-
logits, labels = eval_pred
|
27 |
-
predictions = np.argmax(logits, axis=-1)
|
28 |
-
return metric.compute(predictions=predictions, references=labels)
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
)
|
|
|
37 |
|
38 |
-
trainer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
|
41 |
|
@@ -59,7 +61,7 @@ ai = aitextgen(model="EleutherAI/gpt-neo-1.3B")
|
|
59 |
# print (output)
|
60 |
|
61 |
def ai_text(inp):
|
62 |
-
generated_text = ai.generate_one(max_length=
|
63 |
print(type(generated_text))
|
64 |
return generated_text
|
65 |
|
|
|
6 |
#import torch.nn.functional as F
|
7 |
from aitextgen import aitextgen
|
8 |
|
9 |
+
#is fine tuning worth is?????????????????????????????????????????????
|
10 |
|
11 |
+
#device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
|
12 |
|
13 |
+
#from datasets import load_dataset
|
14 |
+
#dataset = load_dataset("bananabot/engMollywoodSummaries")
|
15 |
+
#tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
|
16 |
|
17 |
+
#tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
|
18 |
|
19 |
+
#def tokenize_function(examples):
|
20 |
+
# return tokenizer(examples["text"], padding="max_length", truncation=True)
|
21 |
+
#tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
#model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B").to(device)
|
24 |
+
#training_args = TrainingArguments(output_dir="test_trainer")
|
25 |
+
#small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
|
26 |
+
#small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
|
27 |
+
#def compute_metrics(eval_pred):
|
28 |
+
# logits, labels = eval_pred
|
29 |
+
# predictions = np.argmax(logits, axis=-1)
|
30 |
+
# return metric.compute(predictions=predictions, references=labels)
|
31 |
|
32 |
+
#trainer = Trainer(
|
33 |
+
# model=model,
|
34 |
+
# args=training_args,
|
35 |
+
# train_dataset=small_train_dataset,
|
36 |
+
# eval_dataset=small_eval_dataset,
|
37 |
+
# compute_metrics=compute_metrics,
|
38 |
+
#)
|
39 |
+
|
40 |
+
#trainer.train()
|
41 |
|
42 |
|
43 |
|
|
|
61 |
# print (output)
|
62 |
|
63 |
def ai_text(inp):
|
64 |
+
generated_text = ai.generate_one(max_length=333, prompt = inp, no_repeat_ngram_size=3, num_beams=7, do_sample=True, temperature=1.37, top_k=69, top_p=0.96)
|
65 |
print(type(generated_text))
|
66 |
return generated_text
|
67 |
|