Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,37 @@
|
|
1 |
import torch
|
2 |
import pandas as pd
|
3 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification, TrainingArguments
|
4 |
import gradio as gr
|
5 |
from gradio.mix import Parallel, Series
|
6 |
#import torch.nn.functional as F
|
7 |
from aitextgen import aitextgen
|
|
|
8 |
from datasets import load_dataset
|
9 |
dataset = load_dataset("bananabot/engMollywoodSummaries")
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
|
@@ -15,7 +39,7 @@ ai = aitextgen(model="EleutherAI/gpt-neo-1.3B")
|
|
15 |
|
16 |
#model_name = "EleutherAI/gpt-neo-125M"
|
17 |
#tokenizer = AutoTokenizer.from_pretrained(model_name)
|
18 |
-
|
19 |
|
20 |
#max_length=123
|
21 |
#input_txt = "This malayalam movie is about"
|
|
|
1 |
import torch
|
2 |
import pandas as pd
|
3 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification, TrainingArguments, Trainer
|
4 |
import gradio as gr
|
5 |
from gradio.mix import Parallel, Series
|
6 |
#import torch.nn.functional as F
|
7 |
from aitextgen import aitextgen
|
8 |
+
|
9 |
from datasets import load_dataset
|
10 |
dataset = load_dataset("bananabot/engMollywoodSummaries")
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
|
12 |
+
|
13 |
+
def tokenize_function(examples):
|
14 |
+
return tokenizer(examples["text"], padding="max_length", truncation=True)
|
15 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
16 |
+
|
17 |
+
model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B").to(device)
|
18 |
+
training_args = TrainingArguments(output_dir="test_trainer")
|
19 |
+
small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
|
20 |
+
small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
|
21 |
+
def compute_metrics(eval_pred):
|
22 |
+
logits, labels = eval_pred
|
23 |
+
predictions = np.argmax(logits, axis=-1)
|
24 |
+
return metric.compute(predictions=predictions, references=labels)
|
25 |
+
|
26 |
+
trainer = Trainer(
|
27 |
+
model=model,
|
28 |
+
args=training_args,
|
29 |
+
train_dataset=small_train_dataset,
|
30 |
+
eval_dataset=small_eval_dataset,
|
31 |
+
compute_metrics=compute_metrics,
|
32 |
+
)
|
33 |
+
|
34 |
+
trainer.train()
|
35 |
|
36 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
37 |
|
|
|
39 |
|
40 |
#model_name = "EleutherAI/gpt-neo-125M"
|
41 |
#tokenizer = AutoTokenizer.from_pretrained(model_name)
|
42 |
+
|
43 |
|
44 |
#max_length=123
|
45 |
#input_txt = "This malayalam movie is about"
|