update
Browse files
app.py
CHANGED
@@ -136,33 +136,45 @@ async def generate_text(request: RequestModel):
|
|
136 |
return {"summary_text_2": generated_text}
|
137 |
@app.post("/generate2/")
|
138 |
async def generate_text(file: UploadFile = File(...)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
# Read the uploaded CSV file
|
140 |
try:
|
141 |
-
|
142 |
-
df = pd.read_csv(StringIO(contents.decode('utf-8')))
|
143 |
except Exception as e:
|
144 |
return {"error": f"Error reading CSV file: {str(e)}"}
|
145 |
|
146 |
-
#
|
|
|
|
|
|
|
|
|
147 |
try:
|
148 |
-
# Convert the entire DataFrame to a string
|
149 |
text_to_generate = df.to_string(index=False)
|
150 |
except Exception as e:
|
151 |
return {"error": f"Error converting DataFrame to string: {str(e)}"}
|
152 |
|
|
|
|
|
|
|
|
|
153 |
# Create the request for the API
|
154 |
try:
|
155 |
completion = client.chat.completions.create(
|
156 |
model="meta/llama-3.1-8b-instruct",
|
157 |
-
messages=[{"role": "user", "content": prompt1
|
158 |
temperature=0.2,
|
159 |
top_p=0.9,
|
160 |
-
# max_tokens=1024,
|
161 |
stream=True
|
162 |
)
|
163 |
except Exception as e:
|
164 |
return {"error": f"Error generating text: {str(e)}"}
|
165 |
-
|
166 |
generated_text = ""
|
167 |
for chunk in completion:
|
168 |
if chunk.choices[0].delta.content is not None:
|
|
|
136 |
return {"summary_text_2": generated_text}
|
137 |
@app.post("/generate2/")
|
138 |
async def generate_text(file: UploadFile = File(...)):
|
139 |
+
# Check file size
|
140 |
+
contents = await file.read()
|
141 |
+
file_size = len(contents)
|
142 |
+
|
143 |
+
if file_size > 5_000_000: # 5MB limit
|
144 |
+
return {"error": "File size exceeds the 5MB limit. The file will be sampled."}
|
145 |
+
|
146 |
# Read the uploaded CSV file
|
147 |
try:
|
148 |
+
df = pd.read_csv(io.StringIO(contents.decode('utf-8')))
|
|
|
149 |
except Exception as e:
|
150 |
return {"error": f"Error reading CSV file: {str(e)}"}
|
151 |
|
152 |
+
# Sample the data if it's too large
|
153 |
+
if len(df) > 1000: # Adjust this number based on your needs
|
154 |
+
df = df.sample(n=100, random_state=42)
|
155 |
+
|
156 |
+
# Convert the DataFrame to a string
|
157 |
try:
|
|
|
158 |
text_to_generate = df.to_string(index=False)
|
159 |
except Exception as e:
|
160 |
return {"error": f"Error converting DataFrame to string: {str(e)}"}
|
161 |
|
162 |
+
# Ensure the generated text is within size limits
|
163 |
+
if len(text_to_generate.encode('utf-8')) > 5_000_000:
|
164 |
+
return {"error": "Generated text exceeds size limit even after sampling. Please reduce the data further."}
|
165 |
+
|
166 |
# Create the request for the API
|
167 |
try:
|
168 |
completion = client.chat.completions.create(
|
169 |
model="meta/llama-3.1-8b-instruct",
|
170 |
+
messages=[{"role": "user", "content": prompt1 + text_to_generate}],
|
171 |
temperature=0.2,
|
172 |
top_p=0.9,
|
|
|
173 |
stream=True
|
174 |
)
|
175 |
except Exception as e:
|
176 |
return {"error": f"Error generating text: {str(e)}"}
|
177 |
+
|
178 |
generated_text = ""
|
179 |
for chunk in completion:
|
180 |
if chunk.choices[0].delta.content is not None:
|