Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import subprocess
|
3 |
+
subprocess.check_call(["pip", "install", "transformers"])
|
4 |
+
subprocess.check_call(["pip", "install", "torch"])
|
5 |
+
|
6 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
7 |
+
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained("balaramas/mbart-sahitrans_new_data")
|
9 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("balaramas/mbart-sahitrans_new_data")
|
10 |
+
|
11 |
+
|
12 |
+
def sanmt(txt):
|
13 |
+
|
14 |
+
tokenizer.src_lang = "hi_IN"
|
15 |
+
encoded_ar = tokenizer(txt, return_tensors="pt")
|
16 |
+
generated_tokens = model.generate(
|
17 |
+
**encoded_ar,
|
18 |
+
forced_bos_token_id=tokenizer.lang_code_to_id["hi_IN"]
|
19 |
+
)
|
20 |
+
output = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
21 |
+
return output
|
22 |
+
|
23 |
+
iface = gr.Interface(
|
24 |
+
fn=sanmt,
|
25 |
+
inputs=gr.Textbox(label="Enter text in Sanskrit", placeholder="Type here..."),
|
26 |
+
outputs=gr.Textbox(label="Translated Hindi Text"),
|
27 |
+
title="Sanskrit to Hindi Translator"
|
28 |
+
)
|
29 |
+
iface.launch()
|