|
import gradio as gr |
|
import subprocess |
|
subprocess.check_call(["pip", "install", "--upgrade", "huggingface-hub"]) |
|
subprocess.check_call(["pip", "install", "transformers"]) |
|
subprocess.check_call(["pip", "install", "torch"]) |
|
|
|
|
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("balaramas/mbart-sahitrans_new_data") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("balaramas/mbart-sahitrans_new_data") |
|
|
|
|
|
def sanmt(txt): |
|
|
|
tokenizer.src_lang = "hi_IN" |
|
encoded_ar = tokenizer(txt, return_tensors="pt") |
|
generated_tokens = model.generate( |
|
**encoded_ar, |
|
forced_bos_token_id=tokenizer.lang_code_to_id["hi_IN"] |
|
) |
|
output = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0] |
|
return output |
|
|
|
iface = gr.Interface( |
|
fn=sanmt, |
|
inputs=gr.Textbox(label="Enter text in Sanskrit", placeholder="Type here..."), |
|
outputs=gr.Textbox(label="Translated Hindi Text"), |
|
title="Sanskrit to Hindi Translator" |
|
) |
|
iface.launch() |