Spaces:
Runtime error
Runtime error
Upload prep_mustc_data.py
Browse files- prep_mustc_data.py +294 -0
prep_mustc_data.py
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the MIT license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import argparse
|
8 |
+
import logging
|
9 |
+
import os
|
10 |
+
from pathlib import Path
|
11 |
+
import shutil
|
12 |
+
from itertools import groupby
|
13 |
+
from tempfile import NamedTemporaryFile
|
14 |
+
from typing import Tuple
|
15 |
+
|
16 |
+
import numpy as np
|
17 |
+
import pandas as pd
|
18 |
+
import soundfile as sf
|
19 |
+
from examples.speech_to_text.data_utils import (
|
20 |
+
create_zip,
|
21 |
+
extract_fbank_features,
|
22 |
+
filter_manifest_df,
|
23 |
+
gen_config_yaml,
|
24 |
+
gen_vocab,
|
25 |
+
get_zip_manifest,
|
26 |
+
load_df_from_tsv,
|
27 |
+
save_df_to_tsv,
|
28 |
+
cal_gcmvn_stats,
|
29 |
+
)
|
30 |
+
import torch
|
31 |
+
from torch.utils.data import Dataset
|
32 |
+
from tqdm import tqdm
|
33 |
+
|
34 |
+
from fairseq.data.audio.audio_utils import get_waveform, convert_waveform
|
35 |
+
|
36 |
+
|
37 |
+
log = logging.getLogger(__name__)
|
38 |
+
|
39 |
+
|
40 |
+
MANIFEST_COLUMNS = ["id", "audio", "n_frames", "tgt_text", "speaker"]
|
41 |
+
|
42 |
+
|
43 |
+
class MUSTC(Dataset):
|
44 |
+
"""
|
45 |
+
Create a Dataset for MuST-C. Each item is a tuple of the form:
|
46 |
+
waveform, sample_rate, source utterance, target utterance, speaker_id,
|
47 |
+
utterance_id
|
48 |
+
"""
|
49 |
+
|
50 |
+
SPLITS = ["train", "dev", "tst-COMMON", "tst-HE"]
|
51 |
+
LANGUAGES = ["de", "es", "fr", "it", "nl", "pt", "ro", "ru", "hi", "bn"]
|
52 |
+
|
53 |
+
def __init__(self, root: str, lang: str, split: str) -> None:
|
54 |
+
assert split in self.SPLITS and lang in self.LANGUAGES
|
55 |
+
_root = Path(root) / f"en-{lang}" / "data" / split
|
56 |
+
wav_root, txt_root = _root / "wav", _root / "txt"
|
57 |
+
assert _root.is_dir() and wav_root.is_dir() and txt_root.is_dir()
|
58 |
+
# Load audio segments
|
59 |
+
try:
|
60 |
+
import yaml
|
61 |
+
except ImportError:
|
62 |
+
print("Please install PyYAML to load the MuST-C YAML files")
|
63 |
+
with open(txt_root / f"{split}.yaml") as f:
|
64 |
+
segments = yaml.load(f, Loader=yaml.BaseLoader)
|
65 |
+
# Load source and target utterances
|
66 |
+
for _lang in ["en", lang]:
|
67 |
+
with open(txt_root / f"{split}.{_lang}") as f:
|
68 |
+
utterances = [r.strip() for r in f]
|
69 |
+
assert len(segments) == len(utterances)
|
70 |
+
for i, u in enumerate(utterances):
|
71 |
+
segments[i][_lang] = u
|
72 |
+
# Gather info
|
73 |
+
self.data = []
|
74 |
+
for wav_filename, _seg_group in groupby(segments, lambda x: x["wav"]):
|
75 |
+
wav_path = wav_root / wav_filename
|
76 |
+
sample_rate = sf.info(wav_path.as_posix()).samplerate
|
77 |
+
seg_group = sorted(_seg_group, key=lambda x: x["offset"])
|
78 |
+
for i, segment in enumerate(seg_group):
|
79 |
+
offset = int(float(segment["offset"]) * sample_rate)
|
80 |
+
n_frames = int(float(segment["duration"]) * sample_rate)
|
81 |
+
_id = f"{wav_path.stem}_{i}"
|
82 |
+
self.data.append(
|
83 |
+
(
|
84 |
+
wav_path.as_posix(),
|
85 |
+
offset,
|
86 |
+
n_frames,
|
87 |
+
sample_rate,
|
88 |
+
segment["en"],
|
89 |
+
segment[lang],
|
90 |
+
segment["speaker_id"],
|
91 |
+
_id,
|
92 |
+
)
|
93 |
+
)
|
94 |
+
|
95 |
+
def __getitem__(
|
96 |
+
self, n: int
|
97 |
+
) -> Tuple[torch.Tensor, int, str, str, str, str]:
|
98 |
+
wav_path, offset, n_frames, sr, src_utt, tgt_utt, spk_id, \
|
99 |
+
utt_id = self.data[n]
|
100 |
+
waveform, _ = get_waveform(wav_path, frames=n_frames, start=offset)
|
101 |
+
waveform = torch.from_numpy(waveform)
|
102 |
+
return waveform, sr, src_utt, tgt_utt, spk_id, utt_id
|
103 |
+
|
104 |
+
def __len__(self) -> int:
|
105 |
+
return len(self.data)
|
106 |
+
|
107 |
+
|
108 |
+
def process(args):
|
109 |
+
root = Path(args.data_root).absolute()
|
110 |
+
for lang in MUSTC.LANGUAGES:
|
111 |
+
cur_root = root / f"en-{lang}"
|
112 |
+
if not cur_root.is_dir():
|
113 |
+
print(f"{cur_root.as_posix()} does not exist. Skipped.")
|
114 |
+
continue
|
115 |
+
# Extract features
|
116 |
+
audio_root = cur_root / ("flac" if args.use_audio_input else "fbank80")
|
117 |
+
audio_root.mkdir(exist_ok=True)
|
118 |
+
|
119 |
+
for split in MUSTC.SPLITS:
|
120 |
+
print(f"Fetching split {split}...")
|
121 |
+
dataset = MUSTC(root.as_posix(), lang, split)
|
122 |
+
if args.use_audio_input:
|
123 |
+
print("Converting audios...")
|
124 |
+
for waveform, sample_rate, _, _, _, utt_id in tqdm(dataset):
|
125 |
+
tgt_sample_rate = 16_000
|
126 |
+
_wavform, _ = convert_waveform(
|
127 |
+
waveform, sample_rate, to_mono=True,
|
128 |
+
to_sample_rate=tgt_sample_rate
|
129 |
+
)
|
130 |
+
sf.write(
|
131 |
+
(audio_root / f"{utt_id}.flac").as_posix(),
|
132 |
+
_wavform.T.numpy(), tgt_sample_rate
|
133 |
+
)
|
134 |
+
else:
|
135 |
+
print("Extracting log mel filter bank features...")
|
136 |
+
gcmvn_feature_list = []
|
137 |
+
if split == 'train' and args.cmvn_type == "global":
|
138 |
+
print("And estimating cepstral mean and variance stats...")
|
139 |
+
|
140 |
+
for waveform, sample_rate, _, _, _, utt_id in tqdm(dataset):
|
141 |
+
features = extract_fbank_features(
|
142 |
+
waveform, sample_rate, audio_root / f"{utt_id}.npy"
|
143 |
+
)
|
144 |
+
if split == 'train' and args.cmvn_type == "global":
|
145 |
+
if len(gcmvn_feature_list) < args.gcmvn_max_num:
|
146 |
+
gcmvn_feature_list.append(features)
|
147 |
+
|
148 |
+
if split == 'train' and args.cmvn_type == "global":
|
149 |
+
# Estimate and save cmv
|
150 |
+
stats = cal_gcmvn_stats(gcmvn_feature_list)
|
151 |
+
with open(cur_root / "gcmvn.npz", "wb") as f:
|
152 |
+
np.savez(f, mean=stats["mean"], std=stats["std"])
|
153 |
+
|
154 |
+
# Pack features into ZIP
|
155 |
+
zip_path = cur_root / f"{audio_root.name}.zip"
|
156 |
+
print("ZIPing audios/features...")
|
157 |
+
create_zip(audio_root, zip_path)
|
158 |
+
print("Fetching ZIP manifest...")
|
159 |
+
audio_paths, audio_lengths = get_zip_manifest(
|
160 |
+
zip_path,
|
161 |
+
is_audio=args.use_audio_input,
|
162 |
+
)
|
163 |
+
# Generate TSV manifest
|
164 |
+
print("Generating manifest...")
|
165 |
+
train_text = []
|
166 |
+
for split in MUSTC.SPLITS:
|
167 |
+
is_train_split = split.startswith("train")
|
168 |
+
manifest = {c: [] for c in MANIFEST_COLUMNS}
|
169 |
+
dataset = MUSTC(args.data_root, lang, split)
|
170 |
+
for _, _, src_utt, tgt_utt, speaker_id, utt_id in tqdm(dataset):
|
171 |
+
manifest["id"].append(utt_id)
|
172 |
+
manifest["audio"].append(audio_paths[utt_id])
|
173 |
+
manifest["n_frames"].append(audio_lengths[utt_id])
|
174 |
+
manifest["tgt_text"].append(
|
175 |
+
src_utt if args.task == "asr" else tgt_utt
|
176 |
+
)
|
177 |
+
manifest["speaker"].append(speaker_id)
|
178 |
+
if is_train_split:
|
179 |
+
train_text.extend(manifest["tgt_text"])
|
180 |
+
df = pd.DataFrame.from_dict(manifest)
|
181 |
+
df = filter_manifest_df(df, is_train_split=is_train_split)
|
182 |
+
save_df_to_tsv(df, cur_root / f"{split}_{args.task}.tsv")
|
183 |
+
# Generate vocab
|
184 |
+
v_size_str = "" if args.vocab_type == "char" else str(args.vocab_size)
|
185 |
+
spm_filename_prefix = f"spm_{args.vocab_type}{v_size_str}_{args.task}"
|
186 |
+
with NamedTemporaryFile(mode="w") as f:
|
187 |
+
for t in train_text:
|
188 |
+
f.write(t + "\n")
|
189 |
+
gen_vocab(
|
190 |
+
Path(f.name),
|
191 |
+
cur_root / spm_filename_prefix,
|
192 |
+
args.vocab_type,
|
193 |
+
args.vocab_size,
|
194 |
+
)
|
195 |
+
# Generate config YAML
|
196 |
+
if args.use_audio_input:
|
197 |
+
gen_config_yaml(
|
198 |
+
cur_root,
|
199 |
+
spm_filename=spm_filename_prefix + ".model",
|
200 |
+
yaml_filename=f"config_{args.task}.yaml",
|
201 |
+
specaugment_policy=None,
|
202 |
+
extra={"use_audio_input": True}
|
203 |
+
)
|
204 |
+
else:
|
205 |
+
gen_config_yaml(
|
206 |
+
cur_root,
|
207 |
+
spm_filename=spm_filename_prefix + ".model",
|
208 |
+
yaml_filename=f"config_{args.task}.yaml",
|
209 |
+
specaugment_policy="lb",
|
210 |
+
cmvn_type=args.cmvn_type,
|
211 |
+
gcmvn_path=(
|
212 |
+
cur_root / "gcmvn.npz" if args.cmvn_type == "global"
|
213 |
+
else None
|
214 |
+
),
|
215 |
+
)
|
216 |
+
# Clean up
|
217 |
+
shutil.rmtree(audio_root)
|
218 |
+
|
219 |
+
|
220 |
+
def process_joint(args):
|
221 |
+
cur_root = Path(args.data_root)
|
222 |
+
assert all(
|
223 |
+
(cur_root / f"en-{lang}").is_dir() for lang in MUSTC.LANGUAGES
|
224 |
+
), "do not have downloaded data available for all 8 languages"
|
225 |
+
# Generate vocab
|
226 |
+
vocab_size_str = "" if args.vocab_type == "char" else str(args.vocab_size)
|
227 |
+
spm_filename_prefix = f"spm_{args.vocab_type}{vocab_size_str}_{args.task}"
|
228 |
+
with NamedTemporaryFile(mode="w") as f:
|
229 |
+
for lang in MUSTC.LANGUAGES:
|
230 |
+
tsv_path = cur_root / f"en-{lang}" / f"train_{args.task}.tsv"
|
231 |
+
df = load_df_from_tsv(tsv_path)
|
232 |
+
for t in df["tgt_text"]:
|
233 |
+
f.write(t + "\n")
|
234 |
+
special_symbols = None
|
235 |
+
if args.task == 'st':
|
236 |
+
special_symbols = [f'<lang:{lang}>' for lang in MUSTC.LANGUAGES]
|
237 |
+
gen_vocab(
|
238 |
+
Path(f.name),
|
239 |
+
cur_root / spm_filename_prefix,
|
240 |
+
args.vocab_type,
|
241 |
+
args.vocab_size,
|
242 |
+
special_symbols=special_symbols
|
243 |
+
)
|
244 |
+
# Generate config YAML
|
245 |
+
gen_config_yaml(
|
246 |
+
cur_root,
|
247 |
+
spm_filename=spm_filename_prefix + ".model",
|
248 |
+
yaml_filename=f"config_{args.task}.yaml",
|
249 |
+
specaugment_policy="ld",
|
250 |
+
prepend_tgt_lang_tag=(args.task == "st"),
|
251 |
+
)
|
252 |
+
# Make symbolic links to manifests
|
253 |
+
for lang in MUSTC.LANGUAGES:
|
254 |
+
for split in MUSTC.SPLITS:
|
255 |
+
src_path = cur_root / f"en-{lang}" / f"{split}_{args.task}.tsv"
|
256 |
+
desc_path = cur_root / f"{split}_{lang}_{args.task}.tsv"
|
257 |
+
if not desc_path.is_symlink():
|
258 |
+
os.symlink(src_path, desc_path)
|
259 |
+
|
260 |
+
|
261 |
+
def main():
|
262 |
+
parser = argparse.ArgumentParser()
|
263 |
+
parser.add_argument("--data-root", "-d", required=True, type=str)
|
264 |
+
parser.add_argument(
|
265 |
+
"--vocab-type",
|
266 |
+
default="unigram",
|
267 |
+
required=True,
|
268 |
+
type=str,
|
269 |
+
choices=["bpe", "unigram", "char"],
|
270 |
+
),
|
271 |
+
parser.add_argument("--vocab-size", default=8000, type=int)
|
272 |
+
parser.add_argument("--task", type=str, choices=["asr", "st"])
|
273 |
+
parser.add_argument("--joint", action="store_true", help="")
|
274 |
+
parser.add_argument(
|
275 |
+
"--cmvn-type", default="utterance",
|
276 |
+
choices=["global", "utterance"],
|
277 |
+
help="The type of cepstral mean and variance normalization"
|
278 |
+
)
|
279 |
+
parser.add_argument(
|
280 |
+
"--gcmvn-max-num", default=150000, type=int,
|
281 |
+
help="Maximum number of sentences to use to estimate global mean and "
|
282 |
+
"variance"
|
283 |
+
)
|
284 |
+
parser.add_argument("--use-audio-input", action="store_true")
|
285 |
+
args = parser.parse_args()
|
286 |
+
|
287 |
+
if args.joint:
|
288 |
+
process_joint(args)
|
289 |
+
else:
|
290 |
+
process(args)
|
291 |
+
|
292 |
+
|
293 |
+
if __name__ == "__main__":
|
294 |
+
main()
|