File size: 9,927 Bytes
4f94afb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45c3a8d
4f94afb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd39ba3
4f94afb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import argparse
import logging
import os
from pathlib import Path
import shutil
from itertools import groupby
from tempfile import NamedTemporaryFile
from typing import Tuple

import numpy as np
import pandas as pd
import soundfile as sf
from data_utils import (
    create_zip,
    extract_fbank_features,
    filter_manifest_df,
    gen_config_yaml,
    gen_vocab,
    get_zip_manifest,
    load_df_from_tsv,
    save_df_to_tsv,
    cal_gcmvn_stats,
)
import torch
from torch.utils.data import Dataset
from tqdm import tqdm

from fairseq.data.audio.audio_utils import get_waveform, convert_waveform


log = logging.getLogger(__name__)


MANIFEST_COLUMNS = ["id", "audio", "n_frames", "tgt_text", "speaker"]


class MUSTC(Dataset):
    """
    Create a Dataset for MuST-C. Each item is a tuple of the form:
    waveform, sample_rate, source utterance, target utterance, speaker_id,
    utterance_id
    """

    SPLITS = ["tst-COMMON"]
    LANGUAGES = ["de", "es", "fr", "it", "nl", "pt", "ro", "ru", "hi", "bn", "ne", "gj", "tm", "mt", "pn", "tl" , "ml", "kn"]

    def __init__(self, root: str, lang: str, split: str) -> None:
        assert split in self.SPLITS and lang in self.LANGUAGES
        _root = Path(root) / f"en-{lang}" / "data" / split
        wav_root, txt_root = _root / "wav", _root / "txt"
        #print(_root, wav_root, txt_root)
        assert _root.is_dir() and wav_root.is_dir() and txt_root.is_dir()
        # Load audio segments
        try:
            import yaml
        except ImportError:
            print("Please install PyYAML to load the MuST-C YAML files")
        with open(txt_root / f"{split}.yaml") as f:
            segments = yaml.load(f, Loader=yaml.BaseLoader)
        # Load source and target utterances
        for _lang in ["en", lang]:
            with open(txt_root / f"{split}.{_lang}") as f:
                utterances = [r.strip() for r in f]
            print(len(segments), len(utterances))
            assert len(segments) == len(utterances)
            for i, u in enumerate(utterances):
                segments[i][_lang] = u
        # Gather info
        self.data = []
        for wav_filename, _seg_group in groupby(segments, lambda x: x["wav"]):
            wav_path = wav_root / wav_filename
            sample_rate = sf.info(wav_path.as_posix()).samplerate
            seg_group = sorted(_seg_group, key=lambda x: x["offset"])
            for i, segment in enumerate(seg_group):
                offset = int(float(segment["offset"]) * sample_rate)
                n_frames = int(float(segment["duration"]) * sample_rate)
                _id = f"{wav_path.stem}_{i}"
                self.data.append(
                    (
                        wav_path.as_posix(),
                        offset,
                        n_frames,
                        sample_rate,
                        segment["en"],
                        segment[lang],
                        segment["speaker_id"],
                        _id,
                    )
                )

    def __getitem__(
            self, n: int
    ) -> Tuple[torch.Tensor, int, str, str, str, str]:
        wav_path, offset, n_frames, sr, src_utt, tgt_utt, spk_id, \
            utt_id = self.data[n]
        waveform, _ = get_waveform(wav_path, frames=n_frames, start=offset)
        waveform = torch.from_numpy(waveform)
        return waveform, sr, src_utt, tgt_utt, spk_id, utt_id

    def __len__(self) -> int:
        return len(self.data)


def process(args):
    root = Path(args.data_root).absolute()
    for lang in MUSTC.LANGUAGES:
        cur_root = root / f"en-{lang}"
        if not cur_root.is_dir():
            print(f"{cur_root.as_posix()} does not exist. Skipped.")
            continue
        # Extract features
        audio_root = cur_root / ("flac" if args.use_audio_input else "fbank80")
        audio_root.mkdir(exist_ok=True)

        for split in MUSTC.SPLITS:
            print(f"Fetching split {split}...")
            dataset = MUSTC(root.as_posix(), lang, split)
            if args.use_audio_input:
                print("Converting audios...")
                for waveform, sample_rate, _, _, _, utt_id in tqdm(dataset):
                    tgt_sample_rate = 16_000
                    _wavform, _ = convert_waveform(
                        waveform, sample_rate, to_mono=True,
                        to_sample_rate=tgt_sample_rate
                    )
                    sf.write(
                        (audio_root / f"{utt_id}.flac").as_posix(),
                        _wavform.T.numpy(), tgt_sample_rate
                    )
            else:
                print("Extracting log mel filter bank features...")
                gcmvn_feature_list = []
                if split == 'train' and args.cmvn_type == "global":
                    print("And estimating cepstral mean and variance stats...")

                for waveform, sample_rate, _, _, _, utt_id in tqdm(dataset):
                    features = extract_fbank_features(
                        waveform, sample_rate, audio_root / f"{utt_id}.npy"
                    )
                    if split == 'train' and args.cmvn_type == "global":
                        if len(gcmvn_feature_list) < args.gcmvn_max_num:
                            gcmvn_feature_list.append(features)

                if split == 'train' and args.cmvn_type == "global":
                    # Estimate and save cmv
                    stats = cal_gcmvn_stats(gcmvn_feature_list)
                    with open(cur_root / "gcmvn.npz", "wb") as f:
                        np.savez(f, mean=stats["mean"], std=stats["std"])

        # Pack features into ZIP
        zip_path = cur_root / f"{audio_root.name}.zip"
        print("ZIPing audios/features...")
        create_zip(audio_root, zip_path)
        print("Fetching ZIP manifest...")
        audio_paths, audio_lengths = get_zip_manifest(
            zip_path,
            is_audio=args.use_audio_input,
        )
        # Generate TSV manifest
        print("Generating manifest...")
        train_text = []
        for split in MUSTC.SPLITS:
            is_train_split = split.startswith("train")
            manifest = {c: [] for c in MANIFEST_COLUMNS}
            dataset = MUSTC(args.data_root, lang, split)
            for _, _, src_utt, tgt_utt, speaker_id, utt_id in tqdm(dataset):
                manifest["id"].append(utt_id)
                manifest["audio"].append(audio_paths[utt_id])
                manifest["n_frames"].append(audio_lengths[utt_id])
                manifest["tgt_text"].append(
                    src_utt if args.task == "asr" else tgt_utt
                )
                manifest["speaker"].append(speaker_id)
            if is_train_split:
                train_text.extend(manifest["tgt_text"])
            df = pd.DataFrame.from_dict(manifest)
            df = filter_manifest_df(df, is_train_split=is_train_split)
            save_df_to_tsv(df, cur_root / f"{split}_{args.task}.tsv")
        # Clean up
        shutil.rmtree(audio_root)


def process_joint(args):
    cur_root = Path(args.data_root)
    assert all(
        (cur_root / f"en-{lang}").is_dir() for lang in MUSTC.LANGUAGES
    ), "do not have downloaded data available for all 8 languages"
    # Generate vocab
    vocab_size_str = "" if args.vocab_type == "char" else str(args.vocab_size)
    spm_filename_prefix = f"spm_{args.vocab_type}{vocab_size_str}_{args.task}"
    with NamedTemporaryFile(mode="w") as f:
        for lang in MUSTC.LANGUAGES:
            tsv_path = cur_root / f"en-{lang}" / f"train_{args.task}.tsv"
            df = load_df_from_tsv(tsv_path)
            for t in df["tgt_text"]:
                f.write(t + "\n")
        special_symbols = None
        if args.task == 'st':
            special_symbols = [f'<lang:{lang}>' for lang in MUSTC.LANGUAGES]
        gen_vocab(
            Path(f.name),
            cur_root / spm_filename_prefix,
            args.vocab_type,
            args.vocab_size,
            special_symbols=special_symbols
        )
    # Generate config YAML
    gen_config_yaml(
        cur_root,
        spm_filename=spm_filename_prefix + ".model",
        yaml_filename=f"config_{args.task}.yaml",
        specaugment_policy="ld",
        prepend_tgt_lang_tag=(args.task == "st"),
    )
    # Make symbolic links to manifests
    for lang in MUSTC.LANGUAGES:
        for split in MUSTC.SPLITS:
            src_path = cur_root / f"en-{lang}" / f"{split}_{args.task}.tsv"
            desc_path = cur_root / f"{split}_{lang}_{args.task}.tsv"
            if not desc_path.is_symlink():
                os.symlink(src_path, desc_path)


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--data-root", "-d", required=True, type=str)
    parser.add_argument(
        "--vocab-type",
        default="unigram",
        required=True,
        type=str,
        choices=["bpe", "unigram", "char"],
    ),
    parser.add_argument("--vocab-size", default=8000, type=int)
    parser.add_argument("--task", type=str, choices=["asr", "st"])
    parser.add_argument("--joint", action="store_true", help="")
    parser.add_argument(
        "--cmvn-type", default="utterance",
        choices=["global", "utterance"],
        help="The type of cepstral mean and variance normalization"
    )
    parser.add_argument(
        "--gcmvn-max-num", default=150000, type=int,
        help="Maximum number of sentences to use to estimate global mean and "
             "variance"
        )
    parser.add_argument("--use-audio-input", action="store_true")
    args = parser.parse_args()

    if args.joint:
        process_joint(args)
    else:
        process(args)


if __name__ == "__main__":
    main()