File size: 12,272 Bytes
4f94afb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import csv
from pathlib import Path
import zipfile
from functools import reduce
from multiprocessing import cpu_count
from typing import Any, Dict, List, Optional, Union
import io

import numpy as np
import pandas as pd
import sentencepiece as sp
from fairseq.data.audio.audio_utils import (
    convert_waveform, _get_kaldi_fbank, _get_torchaudio_fbank, is_npy_data,
    is_sf_audio_data
)
import torch
import soundfile as sf
from tqdm import tqdm


UNK_TOKEN, UNK_TOKEN_ID = "<unk>", 3
BOS_TOKEN, BOS_TOKEN_ID = "<s>", 0
EOS_TOKEN, EOS_TOKEN_ID = "</s>", 2
PAD_TOKEN, PAD_TOKEN_ID = "<pad>", 1


def gen_vocab(
    input_path: Path, output_path_prefix: Path, model_type="bpe",
    vocab_size=1000, special_symbols: Optional[List[str]] = None
):
    # Train SentencePiece Model
    arguments = [
        f"--input={input_path.as_posix()}",
        f"--model_prefix={output_path_prefix.as_posix()}",
        f"--model_type={model_type}",
        f"--vocab_size={vocab_size}",
        "--character_coverage=1.0",
        f"--num_threads={cpu_count()}",
        f"--unk_id={UNK_TOKEN_ID}",
        f"--bos_id={BOS_TOKEN_ID}",
        f"--eos_id={EOS_TOKEN_ID}",
        f"--pad_id={PAD_TOKEN_ID}",
    ]
    if special_symbols is not None:
        _special_symbols = ",".join(special_symbols)
        arguments.append(f"--user_defined_symbols={_special_symbols}")
    sp.SentencePieceTrainer.Train(" ".join(arguments))
    # Export fairseq dictionary
    spm = sp.SentencePieceProcessor()
    spm.Load(output_path_prefix.as_posix() + ".model")
    vocab = {i: spm.IdToPiece(i) for i in range(spm.GetPieceSize())}
    assert (
        vocab.get(UNK_TOKEN_ID) == UNK_TOKEN
        and vocab.get(PAD_TOKEN_ID) == PAD_TOKEN
        and vocab.get(BOS_TOKEN_ID) == BOS_TOKEN
        and vocab.get(EOS_TOKEN_ID) == EOS_TOKEN
    )
    vocab = {
        i: s
        for i, s in vocab.items()
        if s not in {UNK_TOKEN, BOS_TOKEN, EOS_TOKEN, PAD_TOKEN}
    }
    with open(output_path_prefix.as_posix() + ".txt", "w") as f_out:
        for _, s in sorted(vocab.items(), key=lambda x: x[0]):
            f_out.write(f"{s} 1\n")


def extract_fbank_features(
    waveform: torch.FloatTensor,
    sample_rate: int,
    output_path: Optional[Path] = None,
    n_mel_bins: int = 80,
    overwrite: bool = False,
):
    if output_path is not None and output_path.is_file() and not overwrite:
        return

    _waveform, _ = convert_waveform(waveform, sample_rate, to_mono=True)
    # Kaldi compliance: 16-bit signed integers
    _waveform = _waveform * (2 ** 15)
    _waveform = _waveform.numpy()

    features = _get_kaldi_fbank(_waveform, sample_rate, n_mel_bins)
    if features is None:
        features = _get_torchaudio_fbank(_waveform, sample_rate, n_mel_bins)
    if features is None:
        raise ImportError(
            "Please install pyKaldi or torchaudio to enable fbank feature extraction"
        )

    if output_path is not None:
        np.save(output_path.as_posix(), features)
    return features


def create_zip(data_root: Path, zip_path: Path):
    paths = list(data_root.glob("*.npy"))
    paths.extend(data_root.glob("*.flac"))
    with zipfile.ZipFile(zip_path, "w", zipfile.ZIP_STORED) as f:
        for path in tqdm(paths):
            f.write(path, arcname=path.name)


def get_zip_manifest(
        zip_path: Path, zip_root: Optional[Path] = None, is_audio=False
):
    _zip_path = Path.joinpath(zip_root or Path(""), zip_path)
    with zipfile.ZipFile(_zip_path, mode="r") as f:
        info = f.infolist()
    paths, lengths = {}, {}
    for i in tqdm(info):
        utt_id = Path(i.filename).stem
        offset, file_size = i.header_offset + 30 + len(i.filename), i.file_size
        paths[utt_id] = f"{zip_path.as_posix()}:{offset}:{file_size}"
        with open(_zip_path, "rb") as f:
            f.seek(offset)
            byte_data = f.read(file_size)
            assert len(byte_data) > 1
            if is_audio:
                assert is_sf_audio_data(byte_data), i
            else:
                assert is_npy_data(byte_data), i
            byte_data_fp = io.BytesIO(byte_data)
            if is_audio:
                lengths[utt_id] = sf.info(byte_data_fp).frames
            else:
                lengths[utt_id] = np.load(byte_data_fp).shape[0]
    return paths, lengths


def gen_config_yaml(
    manifest_root: Path,
    spm_filename: Optional[str] = None,
    vocab_name: Optional[str] = None,
    yaml_filename: str = "config.yaml",
    specaugment_policy: Optional[str] = "lb",
    prepend_tgt_lang_tag: bool = False,
    sampling_alpha: Optional[float] = None,
    input_channels: Optional[int] = 1,
    input_feat_per_channel: Optional[int] = 80,
    audio_root: str = "",
    cmvn_type: str = "utterance",
    gcmvn_path: Optional[Path] = None,
    extra=None
):
    manifest_root = manifest_root.absolute()
    writer = S2TDataConfigWriter(manifest_root / yaml_filename)
    assert spm_filename is not None or vocab_name is not None
    vocab_name = spm_filename.replace(".model", ".txt") if vocab_name is None \
        else vocab_name
    writer.set_vocab_filename(vocab_name)
    if input_channels is not None:
        writer.set_input_channels(input_channels)
    if input_feat_per_channel is not None:
        writer.set_input_feat_per_channel(input_feat_per_channel)
    specaugment_setters = {
        "lb": writer.set_specaugment_lb_policy,
        "ld": writer.set_specaugment_ld_policy,
        "sm": writer.set_specaugment_sm_policy,
        "ss": writer.set_specaugment_ss_policy,
    }
    specaugment_setter = specaugment_setters.get(specaugment_policy, None)
    if specaugment_setter is not None:
        specaugment_setter()
    if spm_filename is not None:
        writer.set_bpe_tokenizer(
            {
                "bpe": "sentencepiece",
                "sentencepiece_model": (manifest_root / spm_filename).as_posix(),
            }
        )
    if prepend_tgt_lang_tag:
        writer.set_prepend_tgt_lang_tag(True)
    if sampling_alpha is not None:
        writer.set_sampling_alpha(sampling_alpha)

    if cmvn_type not in ["global", "utterance"]:
        raise NotImplementedError

    if specaugment_policy is not None:
        writer.set_feature_transforms(
            "_train", [f"{cmvn_type}_cmvn", "specaugment"]
        )
    writer.set_feature_transforms("*", [f"{cmvn_type}_cmvn"])

    if cmvn_type == "global":
        if gcmvn_path is None:
            raise ValueError("Please provide path of global cmvn file.")
        else:
            writer.set_global_cmvn(gcmvn_path.as_posix())

    if len(audio_root) > 0:
        writer.set_audio_root(audio_root)

    if extra is not None:
        writer.set_extra(extra)
    writer.flush()


def load_df_from_tsv(path: Union[str, Path]) -> pd.DataFrame:
    _path = path if isinstance(path, str) else path.as_posix()
    return pd.read_csv(
        _path,
        sep="\t",
        header=0,
        encoding="utf-8",
        escapechar="\\",
        quoting=csv.QUOTE_NONE,
        na_filter=False,
    )


def save_df_to_tsv(dataframe, path: Union[str, Path]):
    _path = path if isinstance(path, str) else path.as_posix()
    dataframe.to_csv(
        _path,
        sep="\t",
        header=True,
        index=False,
        encoding="utf-8",
        escapechar="\\",
        quoting=csv.QUOTE_NONE,
    )


def load_tsv_to_dicts(path: Union[str, Path]) -> List[dict]:
    with open(path, "r") as f:
        reader = csv.DictReader(
            f,
            delimiter="\t",
            quotechar=None,
            doublequote=False,
            lineterminator="\n",
            quoting=csv.QUOTE_NONE,
        )
        rows = [dict(e) for e in reader]
    return rows


def filter_manifest_df(
    df, is_train_split=False, extra_filters=None, min_n_frames=5, max_n_frames=3000
):
    filters = {
        "no speech": df["audio"] == "",
        f"short speech (<{min_n_frames} frames)": df["n_frames"] < min_n_frames,
        "empty sentence": df["tgt_text"] == "",
    }
    if is_train_split:
        filters[f"long speech (>{max_n_frames} frames)"] = df["n_frames"] > max_n_frames
    if extra_filters is not None:
        filters.update(extra_filters)
    invalid = reduce(lambda x, y: x | y, filters.values())
    valid = ~invalid
    print(
        "| "
        + ", ".join(f"{n}: {f.sum()}" for n, f in filters.items())
        + f", total {invalid.sum()} filtered, {valid.sum()} remained."
    )
    return df[valid]


def cal_gcmvn_stats(features_list):
    features = np.concatenate(features_list)
    square_sums = (features ** 2).sum(axis=0)
    mean = features.mean(axis=0)
    features = np.subtract(features, mean)
    var = square_sums / features.shape[0] - mean ** 2
    std = np.sqrt(np.maximum(var, 1e-8))
    return {"mean": mean.astype("float32"), "std": std.astype("float32")}


class S2TDataConfigWriter(object):
    DEFAULT_VOCAB_FILENAME = "dict.txt"
    DEFAULT_INPUT_FEAT_PER_CHANNEL = 80
    DEFAULT_INPUT_CHANNELS = 1

    def __init__(self, yaml_path: Path):
        try:
            import yaml
        except ImportError:
            print("Please install PyYAML for S2T data config YAML files")
        self.yaml = yaml
        self.yaml_path = yaml_path
        self.config = {}

    def flush(self):
        with open(self.yaml_path, "w") as f:
            self.yaml.dump(self.config, f)

    def set_audio_root(self, audio_root=""):
        self.config["audio_root"] = audio_root

    def set_vocab_filename(self, vocab_filename: str = "dict.txt"):
        self.config["vocab_filename"] = vocab_filename

    def set_specaugment(
        self,
        time_wrap_w: int,
        freq_mask_n: int,
        freq_mask_f: int,
        time_mask_n: int,
        time_mask_t: int,
        time_mask_p: float,
    ):
        self.config["specaugment"] = {
            "time_wrap_W": time_wrap_w,
            "freq_mask_N": freq_mask_n,
            "freq_mask_F": freq_mask_f,
            "time_mask_N": time_mask_n,
            "time_mask_T": time_mask_t,
            "time_mask_p": time_mask_p,
        }

    def set_specaugment_lb_policy(self):
        self.set_specaugment(
            time_wrap_w=0,
            freq_mask_n=1,
            freq_mask_f=27,
            time_mask_n=1,
            time_mask_t=100,
            time_mask_p=1.0,
        )

    def set_specaugment_ld_policy(self):
        self.set_specaugment(
            time_wrap_w=0,
            freq_mask_n=2,
            freq_mask_f=27,
            time_mask_n=2,
            time_mask_t=100,
            time_mask_p=1.0,
        )

    def set_specaugment_sm_policy(self):
        self.set_specaugment(
            time_wrap_w=0,
            freq_mask_n=2,
            freq_mask_f=15,
            time_mask_n=2,
            time_mask_t=70,
            time_mask_p=0.2,
        )

    def set_specaugment_ss_policy(self):
        self.set_specaugment(
            time_wrap_w=0,
            freq_mask_n=2,
            freq_mask_f=27,
            time_mask_n=2,
            time_mask_t=70,
            time_mask_p=0.2,
        )

    def set_input_channels(self, input_channels: int = 1):
        self.config["input_channels"] = input_channels

    def set_input_feat_per_channel(self, input_feat_per_channel: int = 80):
        self.config["input_feat_per_channel"] = input_feat_per_channel

    def set_bpe_tokenizer(self, bpe_tokenizer: Dict[str, Any]):
        self.config["bpe_tokenizer"] = bpe_tokenizer

    def set_global_cmvn(self, stats_npz_path: str):
        self.config["global_cmvn"] = {"stats_npz_path": stats_npz_path}

    def set_feature_transforms(self, split: str, transforms: List[str]):
        if "transforms" not in self.config:
            self.config["transforms"] = {}
        self.config["transforms"][split] = transforms

    def set_prepend_tgt_lang_tag(self, flag: bool = True):
        self.config["prepend_tgt_lang_tag"] = flag

    def set_sampling_alpha(self, sampling_alpha: float = 1.0):
        self.config["sampling_alpha"] = sampling_alpha

    def set_extra(self, data):
        self.config.update(data)