Spaces:
Runtime error
Runtime error
File size: 12,272 Bytes
4f94afb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import csv
from pathlib import Path
import zipfile
from functools import reduce
from multiprocessing import cpu_count
from typing import Any, Dict, List, Optional, Union
import io
import numpy as np
import pandas as pd
import sentencepiece as sp
from fairseq.data.audio.audio_utils import (
convert_waveform, _get_kaldi_fbank, _get_torchaudio_fbank, is_npy_data,
is_sf_audio_data
)
import torch
import soundfile as sf
from tqdm import tqdm
UNK_TOKEN, UNK_TOKEN_ID = "<unk>", 3
BOS_TOKEN, BOS_TOKEN_ID = "<s>", 0
EOS_TOKEN, EOS_TOKEN_ID = "</s>", 2
PAD_TOKEN, PAD_TOKEN_ID = "<pad>", 1
def gen_vocab(
input_path: Path, output_path_prefix: Path, model_type="bpe",
vocab_size=1000, special_symbols: Optional[List[str]] = None
):
# Train SentencePiece Model
arguments = [
f"--input={input_path.as_posix()}",
f"--model_prefix={output_path_prefix.as_posix()}",
f"--model_type={model_type}",
f"--vocab_size={vocab_size}",
"--character_coverage=1.0",
f"--num_threads={cpu_count()}",
f"--unk_id={UNK_TOKEN_ID}",
f"--bos_id={BOS_TOKEN_ID}",
f"--eos_id={EOS_TOKEN_ID}",
f"--pad_id={PAD_TOKEN_ID}",
]
if special_symbols is not None:
_special_symbols = ",".join(special_symbols)
arguments.append(f"--user_defined_symbols={_special_symbols}")
sp.SentencePieceTrainer.Train(" ".join(arguments))
# Export fairseq dictionary
spm = sp.SentencePieceProcessor()
spm.Load(output_path_prefix.as_posix() + ".model")
vocab = {i: spm.IdToPiece(i) for i in range(spm.GetPieceSize())}
assert (
vocab.get(UNK_TOKEN_ID) == UNK_TOKEN
and vocab.get(PAD_TOKEN_ID) == PAD_TOKEN
and vocab.get(BOS_TOKEN_ID) == BOS_TOKEN
and vocab.get(EOS_TOKEN_ID) == EOS_TOKEN
)
vocab = {
i: s
for i, s in vocab.items()
if s not in {UNK_TOKEN, BOS_TOKEN, EOS_TOKEN, PAD_TOKEN}
}
with open(output_path_prefix.as_posix() + ".txt", "w") as f_out:
for _, s in sorted(vocab.items(), key=lambda x: x[0]):
f_out.write(f"{s} 1\n")
def extract_fbank_features(
waveform: torch.FloatTensor,
sample_rate: int,
output_path: Optional[Path] = None,
n_mel_bins: int = 80,
overwrite: bool = False,
):
if output_path is not None and output_path.is_file() and not overwrite:
return
_waveform, _ = convert_waveform(waveform, sample_rate, to_mono=True)
# Kaldi compliance: 16-bit signed integers
_waveform = _waveform * (2 ** 15)
_waveform = _waveform.numpy()
features = _get_kaldi_fbank(_waveform, sample_rate, n_mel_bins)
if features is None:
features = _get_torchaudio_fbank(_waveform, sample_rate, n_mel_bins)
if features is None:
raise ImportError(
"Please install pyKaldi or torchaudio to enable fbank feature extraction"
)
if output_path is not None:
np.save(output_path.as_posix(), features)
return features
def create_zip(data_root: Path, zip_path: Path):
paths = list(data_root.glob("*.npy"))
paths.extend(data_root.glob("*.flac"))
with zipfile.ZipFile(zip_path, "w", zipfile.ZIP_STORED) as f:
for path in tqdm(paths):
f.write(path, arcname=path.name)
def get_zip_manifest(
zip_path: Path, zip_root: Optional[Path] = None, is_audio=False
):
_zip_path = Path.joinpath(zip_root or Path(""), zip_path)
with zipfile.ZipFile(_zip_path, mode="r") as f:
info = f.infolist()
paths, lengths = {}, {}
for i in tqdm(info):
utt_id = Path(i.filename).stem
offset, file_size = i.header_offset + 30 + len(i.filename), i.file_size
paths[utt_id] = f"{zip_path.as_posix()}:{offset}:{file_size}"
with open(_zip_path, "rb") as f:
f.seek(offset)
byte_data = f.read(file_size)
assert len(byte_data) > 1
if is_audio:
assert is_sf_audio_data(byte_data), i
else:
assert is_npy_data(byte_data), i
byte_data_fp = io.BytesIO(byte_data)
if is_audio:
lengths[utt_id] = sf.info(byte_data_fp).frames
else:
lengths[utt_id] = np.load(byte_data_fp).shape[0]
return paths, lengths
def gen_config_yaml(
manifest_root: Path,
spm_filename: Optional[str] = None,
vocab_name: Optional[str] = None,
yaml_filename: str = "config.yaml",
specaugment_policy: Optional[str] = "lb",
prepend_tgt_lang_tag: bool = False,
sampling_alpha: Optional[float] = None,
input_channels: Optional[int] = 1,
input_feat_per_channel: Optional[int] = 80,
audio_root: str = "",
cmvn_type: str = "utterance",
gcmvn_path: Optional[Path] = None,
extra=None
):
manifest_root = manifest_root.absolute()
writer = S2TDataConfigWriter(manifest_root / yaml_filename)
assert spm_filename is not None or vocab_name is not None
vocab_name = spm_filename.replace(".model", ".txt") if vocab_name is None \
else vocab_name
writer.set_vocab_filename(vocab_name)
if input_channels is not None:
writer.set_input_channels(input_channels)
if input_feat_per_channel is not None:
writer.set_input_feat_per_channel(input_feat_per_channel)
specaugment_setters = {
"lb": writer.set_specaugment_lb_policy,
"ld": writer.set_specaugment_ld_policy,
"sm": writer.set_specaugment_sm_policy,
"ss": writer.set_specaugment_ss_policy,
}
specaugment_setter = specaugment_setters.get(specaugment_policy, None)
if specaugment_setter is not None:
specaugment_setter()
if spm_filename is not None:
writer.set_bpe_tokenizer(
{
"bpe": "sentencepiece",
"sentencepiece_model": (manifest_root / spm_filename).as_posix(),
}
)
if prepend_tgt_lang_tag:
writer.set_prepend_tgt_lang_tag(True)
if sampling_alpha is not None:
writer.set_sampling_alpha(sampling_alpha)
if cmvn_type not in ["global", "utterance"]:
raise NotImplementedError
if specaugment_policy is not None:
writer.set_feature_transforms(
"_train", [f"{cmvn_type}_cmvn", "specaugment"]
)
writer.set_feature_transforms("*", [f"{cmvn_type}_cmvn"])
if cmvn_type == "global":
if gcmvn_path is None:
raise ValueError("Please provide path of global cmvn file.")
else:
writer.set_global_cmvn(gcmvn_path.as_posix())
if len(audio_root) > 0:
writer.set_audio_root(audio_root)
if extra is not None:
writer.set_extra(extra)
writer.flush()
def load_df_from_tsv(path: Union[str, Path]) -> pd.DataFrame:
_path = path if isinstance(path, str) else path.as_posix()
return pd.read_csv(
_path,
sep="\t",
header=0,
encoding="utf-8",
escapechar="\\",
quoting=csv.QUOTE_NONE,
na_filter=False,
)
def save_df_to_tsv(dataframe, path: Union[str, Path]):
_path = path if isinstance(path, str) else path.as_posix()
dataframe.to_csv(
_path,
sep="\t",
header=True,
index=False,
encoding="utf-8",
escapechar="\\",
quoting=csv.QUOTE_NONE,
)
def load_tsv_to_dicts(path: Union[str, Path]) -> List[dict]:
with open(path, "r") as f:
reader = csv.DictReader(
f,
delimiter="\t",
quotechar=None,
doublequote=False,
lineterminator="\n",
quoting=csv.QUOTE_NONE,
)
rows = [dict(e) for e in reader]
return rows
def filter_manifest_df(
df, is_train_split=False, extra_filters=None, min_n_frames=5, max_n_frames=3000
):
filters = {
"no speech": df["audio"] == "",
f"short speech (<{min_n_frames} frames)": df["n_frames"] < min_n_frames,
"empty sentence": df["tgt_text"] == "",
}
if is_train_split:
filters[f"long speech (>{max_n_frames} frames)"] = df["n_frames"] > max_n_frames
if extra_filters is not None:
filters.update(extra_filters)
invalid = reduce(lambda x, y: x | y, filters.values())
valid = ~invalid
print(
"| "
+ ", ".join(f"{n}: {f.sum()}" for n, f in filters.items())
+ f", total {invalid.sum()} filtered, {valid.sum()} remained."
)
return df[valid]
def cal_gcmvn_stats(features_list):
features = np.concatenate(features_list)
square_sums = (features ** 2).sum(axis=0)
mean = features.mean(axis=0)
features = np.subtract(features, mean)
var = square_sums / features.shape[0] - mean ** 2
std = np.sqrt(np.maximum(var, 1e-8))
return {"mean": mean.astype("float32"), "std": std.astype("float32")}
class S2TDataConfigWriter(object):
DEFAULT_VOCAB_FILENAME = "dict.txt"
DEFAULT_INPUT_FEAT_PER_CHANNEL = 80
DEFAULT_INPUT_CHANNELS = 1
def __init__(self, yaml_path: Path):
try:
import yaml
except ImportError:
print("Please install PyYAML for S2T data config YAML files")
self.yaml = yaml
self.yaml_path = yaml_path
self.config = {}
def flush(self):
with open(self.yaml_path, "w") as f:
self.yaml.dump(self.config, f)
def set_audio_root(self, audio_root=""):
self.config["audio_root"] = audio_root
def set_vocab_filename(self, vocab_filename: str = "dict.txt"):
self.config["vocab_filename"] = vocab_filename
def set_specaugment(
self,
time_wrap_w: int,
freq_mask_n: int,
freq_mask_f: int,
time_mask_n: int,
time_mask_t: int,
time_mask_p: float,
):
self.config["specaugment"] = {
"time_wrap_W": time_wrap_w,
"freq_mask_N": freq_mask_n,
"freq_mask_F": freq_mask_f,
"time_mask_N": time_mask_n,
"time_mask_T": time_mask_t,
"time_mask_p": time_mask_p,
}
def set_specaugment_lb_policy(self):
self.set_specaugment(
time_wrap_w=0,
freq_mask_n=1,
freq_mask_f=27,
time_mask_n=1,
time_mask_t=100,
time_mask_p=1.0,
)
def set_specaugment_ld_policy(self):
self.set_specaugment(
time_wrap_w=0,
freq_mask_n=2,
freq_mask_f=27,
time_mask_n=2,
time_mask_t=100,
time_mask_p=1.0,
)
def set_specaugment_sm_policy(self):
self.set_specaugment(
time_wrap_w=0,
freq_mask_n=2,
freq_mask_f=15,
time_mask_n=2,
time_mask_t=70,
time_mask_p=0.2,
)
def set_specaugment_ss_policy(self):
self.set_specaugment(
time_wrap_w=0,
freq_mask_n=2,
freq_mask_f=27,
time_mask_n=2,
time_mask_t=70,
time_mask_p=0.2,
)
def set_input_channels(self, input_channels: int = 1):
self.config["input_channels"] = input_channels
def set_input_feat_per_channel(self, input_feat_per_channel: int = 80):
self.config["input_feat_per_channel"] = input_feat_per_channel
def set_bpe_tokenizer(self, bpe_tokenizer: Dict[str, Any]):
self.config["bpe_tokenizer"] = bpe_tokenizer
def set_global_cmvn(self, stats_npz_path: str):
self.config["global_cmvn"] = {"stats_npz_path": stats_npz_path}
def set_feature_transforms(self, split: str, transforms: List[str]):
if "transforms" not in self.config:
self.config["transforms"] = {}
self.config["transforms"][split] = transforms
def set_prepend_tgt_lang_tag(self, flag: bool = True):
self.config["prepend_tgt_lang_tag"] = flag
def set_sampling_alpha(self, sampling_alpha: float = 1.0):
self.config["sampling_alpha"] = sampling_alpha
def set_extra(self, data):
self.config.update(data)
|