白菜工厂1145号员工
Automated commit from batch script
6962fb8
raw
history blame
40.1 kB
from copy import deepcopy
import math
import os, sys
import random
import traceback
from tqdm import tqdm
now_dir = os.getcwd()
sys.path.append(now_dir)
import ffmpeg
import os
from typing import Generator, List, Union
import numpy as np
import torch
import torch.nn.functional as F
import yaml
from transformers import AutoModelForMaskedLM, AutoTokenizer
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from feature_extractor.cnhubert import CNHubert
from module.models import SynthesizerTrn
import librosa
from time import time as ttime
from tools.i18n.i18n import I18nAuto
from my_utils import load_audio
from module.mel_processing import spectrogram_torch
from TTS_infer_pack.text_segmentation_method import splits
from TTS_infer_pack.TextPreprocessor import TextPreprocessor
i18n = I18nAuto()
# configs/tts_infer.yaml
"""
default:
device: cpu
is_half: false
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth
flash_attn_enabled: true
custom:
device: cuda
is_half: true
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth
flash_attn_enabled: true
"""
def set_seed(seed:int):
seed = int(seed)
seed = seed if seed != -1 else random.randrange(1 << 32)
print(f"Set seed to {seed}")
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
try:
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = False
# torch.backends.cudnn.enabled = True
except:
pass
return seed
class TTS_Config:
default_configs={
"device": "cpu",
"is_half": False,
"t2s_weights_path": "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
"vits_weights_path": "GPT_SoVITS/pretrained_models/s2G488k.pth",
"cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base",
"bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
"flash_attn_enabled": True
}
configs:dict = None
def __init__(self, configs: Union[dict, str]=None):
# 设置默认配置文件路径
configs_base_path:str = "GPT_SoVITS/configs/"
os.makedirs(configs_base_path, exist_ok=True)
self.configs_path:str = os.path.join(configs_base_path, "tts_infer.yaml")
if configs in ["", None]:
if not os.path.exists(self.configs_path):
self.save_configs()
print(f"Create default config file at {self.configs_path}")
configs:dict = {"default": deepcopy(self.default_configs)}
if isinstance(configs, str):
self.configs_path = configs
configs:dict = self._load_configs(self.configs_path)
assert isinstance(configs, dict)
default_configs:dict = configs.get("default", None)
if default_configs is not None:
self.default_configs = default_configs
self.configs:dict = configs.get("custom", deepcopy(self.default_configs))
self.device = self.configs.get("device", torch.device("cpu"))
self.is_half = self.configs.get("is_half", False)
self.flash_attn_enabled = self.configs.get("flash_attn_enabled", True)
self.t2s_weights_path = self.configs.get("t2s_weights_path", None)
self.vits_weights_path = self.configs.get("vits_weights_path", None)
self.bert_base_path = self.configs.get("bert_base_path", None)
self.cnhuhbert_base_path = self.configs.get("cnhuhbert_base_path", None)
if (self.t2s_weights_path in [None, ""]) or (not os.path.exists(self.t2s_weights_path)):
self.t2s_weights_path = self.default_configs['t2s_weights_path']
print(f"fall back to default t2s_weights_path: {self.t2s_weights_path}")
if (self.vits_weights_path in [None, ""]) or (not os.path.exists(self.vits_weights_path)):
self.vits_weights_path = self.default_configs['vits_weights_path']
print(f"fall back to default vits_weights_path: {self.vits_weights_path}")
if (self.bert_base_path in [None, ""]) or (not os.path.exists(self.bert_base_path)):
self.bert_base_path = self.default_configs['bert_base_path']
print(f"fall back to default bert_base_path: {self.bert_base_path}")
if (self.cnhuhbert_base_path in [None, ""]) or (not os.path.exists(self.cnhuhbert_base_path)):
self.cnhuhbert_base_path = self.default_configs['cnhuhbert_base_path']
print(f"fall back to default cnhuhbert_base_path: {self.cnhuhbert_base_path}")
self.update_configs()
self.max_sec = None
self.hz:int = 50
self.semantic_frame_rate:str = "25hz"
self.segment_size:int = 20480
self.filter_length:int = 2048
self.sampling_rate:int = 32000
self.hop_length:int = 640
self.win_length:int = 2048
self.n_speakers:int = 300
self.langauges:list = ["auto", "en", "zh", "ja", "all_zh", "all_ja"]
# print(self)
def _load_configs(self, configs_path: str)->dict:
with open(configs_path, 'r') as f:
configs = yaml.load(f, Loader=yaml.FullLoader)
return configs
def save_configs(self, configs_path:str=None)->None:
configs={
"default":self.default_configs,
}
if self.configs is not None:
configs["custom"] = self.update_configs()
if configs_path is None:
configs_path = self.configs_path
with open(configs_path, 'w') as f:
yaml.dump(configs, f)
def update_configs(self):
self.config = {
"device" : str(self.device),
"is_half" : self.is_half,
"t2s_weights_path" : self.t2s_weights_path,
"vits_weights_path" : self.vits_weights_path,
"bert_base_path" : self.bert_base_path,
"cnhuhbert_base_path": self.cnhuhbert_base_path,
"flash_attn_enabled" : self.flash_attn_enabled
}
return self.config
def __str__(self):
self.configs = self.update_configs()
string = "TTS Config".center(100, '-') + '\n'
for k, v in self.configs.items():
string += f"{str(k).ljust(20)}: {str(v)}\n"
string += "-" * 100 + '\n'
return string
def __repr__(self):
return self.__str__()
class TTS:
def __init__(self, configs: Union[dict, str, TTS_Config]):
if isinstance(configs, TTS_Config):
self.configs = configs
else:
self.configs:TTS_Config = TTS_Config(configs)
self.t2s_model:Text2SemanticLightningModule = None
self.vits_model:SynthesizerTrn = None
self.bert_tokenizer:AutoTokenizer = None
self.bert_model:AutoModelForMaskedLM = None
self.cnhuhbert_model:CNHubert = None
self._init_models()
self.text_preprocessor:TextPreprocessor = \
TextPreprocessor(self.bert_model,
self.bert_tokenizer,
self.configs.device)
self.prompt_cache:dict = {
"ref_audio_path":None,
"prompt_semantic":None,
"refer_spepc":None,
"prompt_text":None,
"prompt_lang":None,
"phones":None,
"bert_features":None,
"norm_text":None,
}
self.stop_flag:bool = False
self.precison:torch.dtype = torch.float16 if self.configs.is_half else torch.float32
def _init_models(self,):
self.init_t2s_weights(self.configs.t2s_weights_path)
self.init_vits_weights(self.configs.vits_weights_path)
self.init_bert_weights(self.configs.bert_base_path)
self.init_cnhuhbert_weights(self.configs.cnhuhbert_base_path)
# self.enable_half_precision(self.configs.is_half)
def init_cnhuhbert_weights(self, base_path: str):
print(f"Loading CNHuBERT weights from {base_path}")
self.cnhuhbert_model = CNHubert(base_path)
self.cnhuhbert_model=self.cnhuhbert_model.eval()
self.cnhuhbert_model = self.cnhuhbert_model.to(self.configs.device)
if self.configs.is_half and str(self.configs.device)!="cpu":
self.cnhuhbert_model = self.cnhuhbert_model.half()
def init_bert_weights(self, base_path: str):
print(f"Loading BERT weights from {base_path}")
self.bert_tokenizer = AutoTokenizer.from_pretrained(base_path)
self.bert_model = AutoModelForMaskedLM.from_pretrained(base_path)
self.bert_model=self.bert_model.eval()
self.bert_model = self.bert_model.to(self.configs.device)
if self.configs.is_half and str(self.configs.device)!="cpu":
self.bert_model = self.bert_model.half()
def init_vits_weights(self, weights_path: str):
print(f"Loading VITS weights from {weights_path}")
self.configs.vits_weights_path = weights_path
self.configs.save_configs()
dict_s2 = torch.load(weights_path, map_location=self.configs.device)
hps = dict_s2["config"]
self.configs.filter_length = hps["data"]["filter_length"]
self.configs.segment_size = hps["train"]["segment_size"]
self.configs.sampling_rate = hps["data"]["sampling_rate"]
self.configs.hop_length = hps["data"]["hop_length"]
self.configs.win_length = hps["data"]["win_length"]
self.configs.n_speakers = hps["data"]["n_speakers"]
self.configs.semantic_frame_rate = "25hz"
kwargs = hps["model"]
vits_model = SynthesizerTrn(
self.configs.filter_length // 2 + 1,
self.configs.segment_size // self.configs.hop_length,
n_speakers=self.configs.n_speakers,
**kwargs
)
# if ("pretrained" not in weights_path):
if hasattr(vits_model, "enc_q"):
del vits_model.enc_q
vits_model = vits_model.to(self.configs.device)
vits_model = vits_model.eval()
vits_model.load_state_dict(dict_s2["weight"], strict=False)
self.vits_model = vits_model
if self.configs.is_half and str(self.configs.device)!="cpu":
self.vits_model = self.vits_model.half()
def init_t2s_weights(self, weights_path: str):
print(f"Loading Text2Semantic weights from {weights_path}")
self.configs.t2s_weights_path = weights_path
self.configs.save_configs()
self.configs.hz = 50
dict_s1 = torch.load(weights_path, map_location=self.configs.device)
config = dict_s1["config"]
self.configs.max_sec = config["data"]["max_sec"]
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False,
flash_attn_enabled=self.configs.flash_attn_enabled)
t2s_model.load_state_dict(dict_s1["weight"])
t2s_model = t2s_model.to(self.configs.device)
t2s_model = t2s_model.eval()
self.t2s_model = t2s_model
if self.configs.is_half and str(self.configs.device)!="cpu":
self.t2s_model = self.t2s_model.half()
def enable_half_precision(self, enable: bool = True):
'''
To enable half precision for the TTS model.
Args:
enable: bool, whether to enable half precision.
'''
if str(self.configs.device) == "cpu" and enable:
print("Half precision is not supported on CPU.")
return
self.configs.is_half = enable
self.precison = torch.float16 if enable else torch.float32
self.configs.save_configs()
if enable:
if self.t2s_model is not None:
self.t2s_model =self.t2s_model.half()
if self.vits_model is not None:
self.vits_model = self.vits_model.half()
if self.bert_model is not None:
self.bert_model =self.bert_model.half()
if self.cnhuhbert_model is not None:
self.cnhuhbert_model = self.cnhuhbert_model.half()
else:
if self.t2s_model is not None:
self.t2s_model = self.t2s_model.float()
if self.vits_model is not None:
self.vits_model = self.vits_model.float()
if self.bert_model is not None:
self.bert_model = self.bert_model.float()
if self.cnhuhbert_model is not None:
self.cnhuhbert_model = self.cnhuhbert_model.float()
def set_device(self, device: torch.device):
'''
To set the device for all models.
Args:
device: torch.device, the device to use for all models.
'''
self.configs.device = device
self.configs.save_configs()
if self.t2s_model is not None:
self.t2s_model = self.t2s_model.to(device)
if self.vits_model is not None:
self.vits_model = self.vits_model.to(device)
if self.bert_model is not None:
self.bert_model = self.bert_model.to(device)
if self.cnhuhbert_model is not None:
self.cnhuhbert_model = self.cnhuhbert_model.to(device)
def set_ref_audio(self, ref_audio_path:str):
'''
To set the reference audio for the TTS model,
including the prompt_semantic and refer_spepc.
Args:
ref_audio_path: str, the path of the reference audio.
'''
self._set_prompt_semantic(ref_audio_path)
self._set_ref_spepc(ref_audio_path)
def _set_ref_spepc(self, ref_audio_path):
audio = load_audio(ref_audio_path, int(self.configs.sampling_rate))
audio = torch.FloatTensor(audio)
audio_norm = audio
audio_norm = audio_norm.unsqueeze(0)
spec = spectrogram_torch(
audio_norm,
self.configs.filter_length,
self.configs.sampling_rate,
self.configs.hop_length,
self.configs.win_length,
center=False,
)
spec = spec.to(self.configs.device)
if self.configs.is_half:
spec = spec.half()
# self.refer_spepc = spec
self.prompt_cache["refer_spepc"] = spec
def _set_prompt_semantic(self, ref_wav_path:str):
zero_wav = np.zeros(
int(self.configs.sampling_rate * 0.3),
dtype=np.float16 if self.configs.is_half else np.float32,
)
with torch.no_grad():
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
raise OSError(i18n("参考音频在3~10秒范围外,请更换!"))
wav16k = torch.from_numpy(wav16k)
zero_wav_torch = torch.from_numpy(zero_wav)
wav16k = wav16k.to(self.configs.device)
zero_wav_torch = zero_wav_torch.to(self.configs.device)
if self.configs.is_half:
wav16k = wav16k.half()
zero_wav_torch = zero_wav_torch.half()
wav16k = torch.cat([wav16k, zero_wav_torch])
hubert_feature = self.cnhuhbert_model.model(wav16k.unsqueeze(0))[
"last_hidden_state"
].transpose(
1, 2
) # .float()
codes = self.vits_model.extract_latent(hubert_feature)
prompt_semantic = codes[0, 0].to(self.configs.device)
self.prompt_cache["prompt_semantic"] = prompt_semantic
def batch_sequences(self, sequences: List[torch.Tensor], axis: int = 0, pad_value: int = 0, max_length:int=None):
seq = sequences[0]
ndim = seq.dim()
if axis < 0:
axis += ndim
dtype:torch.dtype = seq.dtype
pad_value = torch.tensor(pad_value, dtype=dtype)
seq_lengths = [seq.shape[axis] for seq in sequences]
if max_length is None:
max_length = max(seq_lengths)
else:
max_length = max(seq_lengths) if max_length < max(seq_lengths) else max_length
padded_sequences = []
for seq, length in zip(sequences, seq_lengths):
padding = [0] * axis + [0, max_length - length] + [0] * (ndim - axis - 1)
padded_seq = torch.nn.functional.pad(seq, padding, value=pad_value)
padded_sequences.append(padded_seq)
batch = torch.stack(padded_sequences)
return batch
def to_batch(self, data:list, prompt_data:dict=None, batch_size:int=5, threshold:float=0.75, split_bucket:bool=True):
_data:list = []
index_and_len_list = []
for idx, item in enumerate(data):
norm_text_len = len(item["norm_text"])
index_and_len_list.append([idx, norm_text_len])
batch_index_list = []
if split_bucket:
index_and_len_list.sort(key=lambda x: x[1])
index_and_len_list = np.array(index_and_len_list, dtype=np.int64)
batch_index_list_len = 0
pos = 0
while pos <index_and_len_list.shape[0]:
# batch_index_list.append(index_and_len_list[pos:min(pos+batch_size,len(index_and_len_list))])
pos_end = min(pos+batch_size,index_and_len_list.shape[0])
while pos < pos_end:
batch=index_and_len_list[pos:pos_end, 1].astype(np.float32)
score=batch[(pos_end-pos)//2]/(batch.mean()+1e-8)
if (score>=threshold) or (pos_end-pos==1):
batch_index=index_and_len_list[pos:pos_end, 0].tolist()
batch_index_list_len += len(batch_index)
batch_index_list.append(batch_index)
pos = pos_end
break
pos_end=pos_end-1
assert batch_index_list_len == len(data)
else:
for i in range(len(data)):
if i%batch_size == 0:
batch_index_list.append([])
batch_index_list[-1].append(i)
for batch_idx, index_list in enumerate(batch_index_list):
item_list = [data[idx] for idx in index_list]
phones_list = []
phones_len_list = []
# bert_features_list = []
all_phones_list = []
all_phones_len_list = []
all_bert_features_list = []
norm_text_batch = []
bert_max_len = 0
phones_max_len = 0
for item in item_list:
if prompt_data is not None:
all_bert_features = torch.cat([prompt_data["bert_features"], item["bert_features"]], 1)\
.to(dtype=self.precison)
all_phones = torch.LongTensor(prompt_data["phones"]+item["phones"])
phones = torch.LongTensor(item["phones"])
# norm_text = prompt_data["norm_text"]+item["norm_text"]
else:
all_bert_features = item["bert_features"]\
.to(dtype=self.precison)
phones = torch.LongTensor(item["phones"])
all_phones = phones
# norm_text = item["norm_text"]
bert_max_len = max(bert_max_len, all_bert_features.shape[-1])
phones_max_len = max(phones_max_len, phones.shape[-1])
phones_list.append(phones)
phones_len_list.append(phones.shape[-1])
all_phones_list.append(all_phones)
all_phones_len_list.append(all_phones.shape[-1])
all_bert_features_list.append(all_bert_features)
norm_text_batch.append(item["norm_text"])
phones_batch = phones_list
max_len = max(bert_max_len, phones_max_len)
# phones_batch = self.batch_sequences(phones_list, axis=0, pad_value=0, max_length=max_len)
all_phones_batch = self.batch_sequences(all_phones_list, axis=0, pad_value=0, max_length=max_len)
# all_bert_features_batch = all_bert_features_list
all_bert_features_batch = torch.zeros(len(item_list), 1024, max_len, dtype=self.precison)
for idx, item in enumerate(all_bert_features_list):
all_bert_features_batch[idx, :, : item.shape[-1]] = item
batch = {
"phones": phones_batch,
"phones_len": torch.LongTensor(phones_len_list),
"all_phones": all_phones_batch,
"all_phones_len": torch.LongTensor(all_phones_len_list),
"all_bert_features": all_bert_features_batch,
"norm_text": norm_text_batch
}
_data.append(batch)
return _data, batch_index_list
def recovery_order(self, data:list, batch_index_list:list)->list:
'''
Recovery the order of the audio according to the batch_index_list.
Args:
data (List[list(np.ndarray)]): the out of order audio .
batch_index_list (List[list[int]]): the batch index list.
Returns:
list (List[np.ndarray]): the data in the original order.
'''
lenght = len(sum(batch_index_list, []))
_data = [None]*lenght
for i, index_list in enumerate(batch_index_list):
for j, index in enumerate(index_list):
_data[index] = data[i][j]
return _data
def stop(self,):
'''
Stop the inference process.
'''
self.stop_flag = True
def run(self, inputs:dict):
"""
Text to speech inference.
Args:
inputs (dict):
{
"text": "", # str. text to be synthesized
"text_lang: "", # str. language of the text to be synthesized
"ref_audio_path": "", # str. reference audio path
"prompt_text": "", # str. prompt text for the reference audio
"prompt_lang": "", # str. language of the prompt text for the reference audio
"top_k": 5, # int. top k sampling
"top_p": 1, # float. top p sampling
"temperature": 1, # float. temperature for sampling
"text_split_method": "", # str. text split method, see text_segmentaion_method.py for details.
"batch_size": 1, # int. batch size for inference
"batch_threshold": 0.75, # float. threshold for batch splitting.
"split_bucket: True, # bool. whether to split the batch into multiple buckets.
"return_fragment": False, # bool. step by step return the audio fragment.
"speed_factor":1.0, # float. control the speed of the synthesized audio.
"fragment_interval":0.3, # float. to control the interval of the audio fragment.
"seed": -1, # int. random seed for reproducibility.
}
returns:
tulpe[int, np.ndarray]: sampling rate and audio data.
"""
########## variables initialization ###########
self.stop_flag:bool = False
text:str = inputs.get("text", "")
text_lang:str = inputs.get("text_lang", "")
ref_audio_path:str = inputs.get("ref_audio_path", "")
prompt_text:str = inputs.get("prompt_text", "")
prompt_lang:str = inputs.get("prompt_lang", "")
top_k:int = inputs.get("top_k", 5)
top_p:float = inputs.get("top_p", 1)
temperature:float = inputs.get("temperature", 1)
text_split_method:str = inputs.get("text_split_method", "")
batch_size = inputs.get("batch_size", 1)
batch_threshold = inputs.get("batch_threshold", 0.75)
speed_factor = inputs.get("speed_factor", 1.0)
split_bucket = inputs.get("split_bucket", True)
return_fragment = inputs.get("return_fragment", False)
fragment_interval = inputs.get("fragment_interval", 0.3)
seed = inputs.get("seed", -1)
seed = -1 if seed in ["", None] else seed
set_seed(seed)
if return_fragment:
# split_bucket = False
print(i18n("分段返回模式已开启"))
if split_bucket:
split_bucket = False
print(i18n("分段返回模式不支持分桶处理,已自动关闭分桶处理"))
if split_bucket:
print(i18n("分桶处理模式已开启"))
if fragment_interval<0.01:
fragment_interval = 0.01
print(i18n("分段间隔过小,已自动设置为0.01"))
no_prompt_text = False
if prompt_text in [None, ""]:
no_prompt_text = True
assert text_lang in self.configs.langauges
if not no_prompt_text:
assert prompt_lang in self.configs.langauges
if ref_audio_path in [None, ""] and \
((self.prompt_cache["prompt_semantic"] is None) or (self.prompt_cache["refer_spepc"] is None)):
raise ValueError("ref_audio_path cannot be empty, when the reference audio is not set using set_ref_audio()")
###### setting reference audio and prompt text preprocessing ########
t0 = ttime()
if (ref_audio_path is not None) and (ref_audio_path != self.prompt_cache["ref_audio_path"]):
self.set_ref_audio(ref_audio_path)
if not no_prompt_text:
prompt_text = prompt_text.strip("\n")
if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_lang != "en" else "."
print(i18n("实际输入的参考文本:"), prompt_text)
if self.prompt_cache["prompt_text"] != prompt_text:
self.prompt_cache["prompt_text"] = prompt_text
self.prompt_cache["prompt_lang"] = prompt_lang
phones, bert_features, norm_text = \
self.text_preprocessor.segment_and_extract_feature_for_text(
prompt_text,
prompt_lang)
self.prompt_cache["phones"] = phones
self.prompt_cache["bert_features"] = bert_features
self.prompt_cache["norm_text"] = norm_text
###### text preprocessing ########
t1 = ttime()
data:list = None
if not return_fragment:
data = self.text_preprocessor.preprocess(text, text_lang, text_split_method)
if len(data) == 0:
yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate),
dtype=np.int16)
return
batch_index_list:list = None
data, batch_index_list = self.to_batch(data,
prompt_data=self.prompt_cache if not no_prompt_text else None,
batch_size=batch_size,
threshold=batch_threshold,
split_bucket=split_bucket
)
else:
print(i18n("############ 切分文本 ############"))
texts = self.text_preprocessor.pre_seg_text(text, text_lang, text_split_method)
data = []
for i in range(len(texts)):
if i%batch_size == 0:
data.append([])
data[-1].append(texts[i])
def make_batch(batch_texts):
batch_data = []
print(i18n("############ 提取文本Bert特征 ############"))
for text in tqdm(batch_texts):
phones, bert_features, norm_text = self.text_preprocessor.segment_and_extract_feature_for_text(text, text_lang)
if phones is None:
continue
res={
"phones": phones,
"bert_features": bert_features,
"norm_text": norm_text,
}
batch_data.append(res)
if len(batch_data) == 0:
return None
batch, _ = self.to_batch(batch_data,
prompt_data=self.prompt_cache if not no_prompt_text else None,
batch_size=batch_size,
threshold=batch_threshold,
split_bucket=False
)
return batch[0]
t2 = ttime()
try:
print("############ 推理 ############")
###### inference ######
t_34 = 0.0
t_45 = 0.0
audio = []
for item in data:
t3 = ttime()
if return_fragment:
item = make_batch(item)
if item is None:
continue
batch_phones = item["phones"]
batch_phones_len = item["phones_len"]
all_phoneme_ids = item["all_phones"]
all_phoneme_lens = item["all_phones_len"]
all_bert_features = item["all_bert_features"]
norm_text = item["norm_text"]
# batch_phones = batch_phones.to(self.configs.device)
batch_phones_len = batch_phones_len.to(self.configs.device)
all_phoneme_ids = all_phoneme_ids.to(self.configs.device)
all_phoneme_lens = all_phoneme_lens.to(self.configs.device)
all_bert_features = all_bert_features.to(self.configs.device)
if self.configs.is_half:
all_bert_features = all_bert_features.half()
print(i18n("前端处理后的文本(每句):"), norm_text)
if no_prompt_text :
prompt = None
else:
prompt = self.prompt_cache["prompt_semantic"].expand(all_phoneme_ids.shape[0], -1).to(self.configs.device)
with torch.no_grad():
pred_semantic_list, idx_list = self.t2s_model.model.infer_panel(
all_phoneme_ids,
all_phoneme_lens,
prompt,
all_bert_features,
# prompt_phone_len=ph_offset,
top_k=top_k,
top_p=top_p,
temperature=temperature,
early_stop_num=self.configs.hz * self.configs.max_sec,
)
t4 = ttime()
t_34 += t4 - t3
refer_audio_spepc:torch.Tensor = self.prompt_cache["refer_spepc"]\
.to(dtype=self.precison, device=self.configs.device)
batch_audio_fragment = []
# ## vits并行推理 method 1
# pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)]
# pred_semantic_len = torch.LongTensor([item.shape[0] for item in pred_semantic_list]).to(self.configs.device)
# pred_semantic = self.batch_sequences(pred_semantic_list, axis=0, pad_value=0).unsqueeze(0)
# max_len = 0
# for i in range(0, len(batch_phones)):
# max_len = max(max_len, batch_phones[i].shape[-1])
# batch_phones = self.batch_sequences(batch_phones, axis=0, pad_value=0, max_length=max_len)
# batch_phones = batch_phones.to(self.configs.device)
# batch_audio_fragment = (self.vits_model.batched_decode(
# pred_semantic, pred_semantic_len, batch_phones, batch_phones_len,refer_audio_spepc
# ))
# ## vits并行推理 method 2
pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)]
upsample_rate = math.prod(self.vits_model.upsample_rates)
audio_frag_idx = [pred_semantic_list[i].shape[0]*2*upsample_rate for i in range(0, len(pred_semantic_list))]
audio_frag_end_idx = [ sum(audio_frag_idx[:i+1]) for i in range(0, len(audio_frag_idx))]
all_pred_semantic = torch.cat(pred_semantic_list).unsqueeze(0).unsqueeze(0).to(self.configs.device)
_batch_phones = torch.cat(batch_phones).unsqueeze(0).to(self.configs.device)
_batch_audio_fragment = (self.vits_model.decode(
all_pred_semantic, _batch_phones,refer_audio_spepc
).detach()[0, 0, :])
audio_frag_end_idx.insert(0, 0)
batch_audio_fragment= [_batch_audio_fragment[audio_frag_end_idx[i-1]:audio_frag_end_idx[i]] for i in range(1, len(audio_frag_end_idx))]
# ## vits串行推理
# for i, idx in enumerate(idx_list):
# phones = batch_phones[i].unsqueeze(0).to(self.configs.device)
# _pred_semantic = (pred_semantic_list[i][-idx:].unsqueeze(0).unsqueeze(0)) # .unsqueeze(0)#mq要多unsqueeze一次
# audio_fragment =(self.vits_model.decode(
# _pred_semantic, phones, refer_audio_spepc
# ).detach()[0, 0, :])
# batch_audio_fragment.append(
# audio_fragment
# ) ###试试重建不带上prompt部分
t5 = ttime()
t_45 += t5 - t4
if return_fragment:
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t4 - t3, t5 - t4))
yield self.audio_postprocess([batch_audio_fragment],
self.configs.sampling_rate,
None,
speed_factor,
False,
fragment_interval
)
else:
audio.append(batch_audio_fragment)
if self.stop_flag:
yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate),
dtype=np.int16)
return
if not return_fragment:
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t_34, t_45))
yield self.audio_postprocess(audio,
self.configs.sampling_rate,
batch_index_list,
speed_factor,
split_bucket,
fragment_interval
)
except Exception as e:
traceback.print_exc()
# 必须返回一个空音频, 否则会导致显存不释放。
yield self.configs.sampling_rate, np.zeros(int(self.configs.sampling_rate),
dtype=np.int16)
# 重置模型, 否则会导致显存释放不完全。
del self.t2s_model
del self.vits_model
self.t2s_model = None
self.vits_model = None
self.init_t2s_weights(self.configs.t2s_weights_path)
self.init_vits_weights(self.configs.vits_weights_path)
finally:
self.empty_cache()
def empty_cache(self):
try:
if "cuda" in str(self.configs.device):
torch.cuda.empty_cache()
elif str(self.configs.device) == "mps":
torch.mps.empty_cache()
except:
pass
def audio_postprocess(self,
audio:List[torch.Tensor],
sr:int,
batch_index_list:list=None,
speed_factor:float=1.0,
split_bucket:bool=True,
fragment_interval:float=0.3
)->tuple[int, np.ndarray]:
zero_wav = torch.zeros(
int(self.configs.sampling_rate * fragment_interval),
dtype=self.precison,
device=self.configs.device
)
for i, batch in enumerate(audio):
for j, audio_fragment in enumerate(batch):
max_audio=torch.abs(audio_fragment).max()#简单防止16bit爆音
if max_audio>1: audio_fragment/=max_audio
audio_fragment:torch.Tensor = torch.cat([audio_fragment, zero_wav], dim=0)
audio[i][j] = audio_fragment.cpu().numpy()
if split_bucket:
audio = self.recovery_order(audio, batch_index_list)
else:
# audio = [item for batch in audio for item in batch]
audio = sum(audio, [])
audio = np.concatenate(audio, 0)
audio = (audio * 32768).astype(np.int16)
try:
if speed_factor != 1.0:
audio = speed_change(audio, speed=speed_factor, sr=int(sr))
except Exception as e:
print(f"Failed to change speed of audio: \n{e}")
return sr, audio
def speed_change(input_audio:np.ndarray, speed:float, sr:int):
# 将 NumPy 数组转换为原始 PCM 流
raw_audio = input_audio.astype(np.int16).tobytes()
# 设置 ffmpeg 输入流
input_stream = ffmpeg.input('pipe:', format='s16le', acodec='pcm_s16le', ar=str(sr), ac=1)
# 变速处理
output_stream = input_stream.filter('atempo', speed)
# 输出流到管道
out, _ = (
output_stream.output('pipe:', format='s16le', acodec='pcm_s16le')
.run(input=raw_audio, capture_stdout=True, capture_stderr=True)
)
# 将管道输出解码为 NumPy 数组
processed_audio = np.frombuffer(out, np.int16)
return processed_audio