Spaces:
Running
Running
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_model.py | |
# reference: https://github.com/lifeiteng/vall-e | |
import os, sys | |
now_dir = os.getcwd() | |
sys.path.append(now_dir) | |
from typing import List | |
import torch | |
from tqdm import tqdm | |
from AR.models.utils import make_pad_mask | |
from AR.models.utils import ( | |
topk_sampling, | |
sample, | |
logits_to_probs, | |
multinomial_sample_one_no_sync, | |
dpo_loss, | |
make_reject_y, | |
get_batch_logps | |
) | |
from AR.modules.embedding import SinePositionalEmbedding | |
from AR.modules.embedding import TokenEmbedding | |
from AR.modules.transformer import LayerNorm | |
from AR.modules.transformer import TransformerEncoder | |
from AR.modules.transformer import TransformerEncoderLayer | |
from torch import nn | |
from torch.nn import functional as F | |
from torchmetrics.classification import MulticlassAccuracy | |
default_config = { | |
"embedding_dim": 512, | |
"hidden_dim": 512, | |
"num_head": 8, | |
"num_layers": 12, | |
"num_codebook": 8, | |
"p_dropout": 0.0, | |
"vocab_size": 1024 + 1, | |
"phoneme_vocab_size": 512, | |
"EOS": 1024, | |
} | |
class T2SMLP: | |
def __init__(self, w1, b1, w2, b2): | |
self.w1 = w1 | |
self.b1 = b1 | |
self.w2 = w2 | |
self.b2 = b2 | |
def forward(self, x): | |
x = F.relu(F.linear(x, self.w1, self.b1)) | |
x = F.linear(x, self.w2, self.b2) | |
return x | |
class T2SBlock: | |
def __init__( | |
self, | |
num_heads, | |
hidden_dim: int, | |
mlp: T2SMLP, | |
qkv_w, | |
qkv_b, | |
out_w, | |
out_b, | |
norm_w1, | |
norm_b1, | |
norm_eps1, | |
norm_w2, | |
norm_b2, | |
norm_eps2, | |
): | |
self.num_heads = num_heads | |
self.mlp = mlp | |
self.hidden_dim: int = hidden_dim | |
self.qkv_w = qkv_w | |
self.qkv_b = qkv_b | |
self.out_w = out_w | |
self.out_b = out_b | |
self.norm_w1 = norm_w1 | |
self.norm_b1 = norm_b1 | |
self.norm_eps1 = norm_eps1 | |
self.norm_w2 = norm_w2 | |
self.norm_b2 = norm_b2 | |
self.norm_eps2 = norm_eps2 | |
def process_prompt(self, x, attn_mask : torch.Tensor): | |
q, k, v = F.linear(x, self.qkv_w, self.qkv_b).chunk(3, dim=-1) | |
batch_size = q.shape[0] | |
q_len = q.shape[1] | |
kv_len = k.shape[1] | |
k_cache = k | |
v_cache = v | |
q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2) | |
k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2) | |
v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2) | |
attn = F.scaled_dot_product_attention(q, k, v, attn_mask) | |
attn = attn.permute(2, 0, 1, 3).reshape(batch_size*q_len, self.hidden_dim) | |
attn = attn.view(q_len, batch_size, self.hidden_dim).transpose(1, 0) | |
attn = F.linear(attn, self.out_w, self.out_b) | |
x = F.layer_norm( | |
x + attn, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1 | |
) | |
x = F.layer_norm( | |
x + self.mlp.forward(x), | |
[self.hidden_dim], | |
self.norm_w2, | |
self.norm_b2, | |
self.norm_eps2, | |
) | |
return x, k_cache, v_cache | |
def decode_next_token(self, x, k_cache, v_cache): | |
q, k, v = F.linear(x, self.qkv_w, self.qkv_b).chunk(3, dim=-1) | |
k_cache = torch.cat([k_cache, k], dim=1) | |
v_cache = torch.cat([v_cache, v], dim=1) | |
batch_size = q.shape[0] | |
q_len = q.shape[1] | |
kv_len = k_cache.shape[1] | |
q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2) | |
k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2) | |
v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2) | |
attn = F.scaled_dot_product_attention(q, k, v) | |
attn = attn.permute(2, 0, 1, 3).reshape(batch_size*q_len, self.hidden_dim) | |
attn = attn.view(q_len, batch_size, self.hidden_dim).transpose(1, 0) | |
attn = F.linear(attn, self.out_w, self.out_b) | |
x = F.layer_norm( | |
x + attn, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1 | |
) | |
x = F.layer_norm( | |
x + self.mlp.forward(x), | |
[self.hidden_dim], | |
self.norm_w2, | |
self.norm_b2, | |
self.norm_eps2, | |
) | |
return x, k_cache, v_cache | |
class T2STransformer: | |
def __init__(self, num_blocks : int, blocks: List[T2SBlock]): | |
self.num_blocks : int = num_blocks | |
self.blocks = blocks | |
def process_prompt( | |
self, x, attn_mask : torch.Tensor): | |
k_cache : List[torch.Tensor] = [] | |
v_cache : List[torch.Tensor] = [] | |
for i in range(self.num_blocks): | |
x, k_cache_, v_cache_ = self.blocks[i].process_prompt(x, attn_mask) | |
k_cache.append(k_cache_) | |
v_cache.append(v_cache_) | |
return x, k_cache, v_cache | |
def decode_next_token( | |
self, x, k_cache: List[torch.Tensor], v_cache: List[torch.Tensor] | |
): | |
for i in range(self.num_blocks): | |
x, k_cache[i], v_cache[i] = self.blocks[i].decode_next_token(x, k_cache[i], v_cache[i]) | |
return x, k_cache, v_cache | |
class Text2SemanticDecoder(nn.Module): | |
def __init__(self, config, norm_first=False, top_k=3, flash_attn_enabled:bool=False): | |
super(Text2SemanticDecoder, self).__init__() | |
self.model_dim = config["model"]["hidden_dim"] | |
self.embedding_dim = config["model"]["embedding_dim"] | |
self.num_head = config["model"]["head"] | |
self.num_layers = config["model"]["n_layer"] | |
self.norm_first = norm_first | |
self.vocab_size = config["model"]["vocab_size"] | |
self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"] | |
self.p_dropout = config["model"]["dropout"] | |
self.EOS = config["model"]["EOS"] | |
self.norm_first = norm_first | |
assert self.EOS == self.vocab_size - 1 | |
# should be same as num of kmeans bin | |
# assert self.EOS == 1024 | |
self.bert_proj = nn.Linear(1024, self.embedding_dim) | |
self.ar_text_embedding = TokenEmbedding( | |
self.embedding_dim, self.phoneme_vocab_size, self.p_dropout | |
) | |
self.ar_text_position = SinePositionalEmbedding( | |
self.embedding_dim, dropout=0.1, scale=False, alpha=True | |
) | |
self.ar_audio_embedding = TokenEmbedding( | |
self.embedding_dim, self.vocab_size, self.p_dropout | |
) | |
self.ar_audio_position = SinePositionalEmbedding( | |
self.embedding_dim, dropout=0.1, scale=False, alpha=True | |
) | |
self.h = TransformerEncoder( | |
TransformerEncoderLayer( | |
d_model=self.model_dim, | |
nhead=self.num_head, | |
dim_feedforward=self.model_dim * 4, | |
dropout=0.1, | |
batch_first=True, | |
norm_first=norm_first, | |
), | |
num_layers=self.num_layers, | |
norm=LayerNorm(self.model_dim) if norm_first else None, | |
) | |
self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False) | |
self.loss_fct = nn.CrossEntropyLoss(reduction="sum") | |
self.ar_accuracy_metric = MulticlassAccuracy( | |
self.vocab_size, | |
top_k=top_k, | |
average="micro", | |
multidim_average="global", | |
ignore_index=self.EOS, | |
) | |
self.enable_flash_attn(flash_attn_enabled) | |
def enable_flash_attn(self, enable:bool=True): | |
if not enable: | |
print("Not Using Flash Attention") | |
self.infer_panel = self.infer_panel_batch_only | |
else: | |
self.infer_panel = self.infer_panel_batch_infer_with_flash_attn | |
print("Using Flash Attention") | |
blocks = [] | |
for i in range(self.num_layers): | |
layer = self.h.layers[i] | |
t2smlp = T2SMLP( | |
layer.linear1.weight, | |
layer.linear1.bias, | |
layer.linear2.weight, | |
layer.linear2.bias | |
) | |
block = T2SBlock( | |
self.num_head, | |
self.model_dim, | |
t2smlp, | |
layer.self_attn.in_proj_weight, | |
layer.self_attn.in_proj_bias, | |
layer.self_attn.out_proj.weight, | |
layer.self_attn.out_proj.bias, | |
layer.norm1.weight, | |
layer.norm1.bias, | |
layer.norm1.eps, | |
layer.norm2.weight, | |
layer.norm2.bias, | |
layer.norm2.eps | |
) | |
blocks.append(block) | |
self.t2s_transformer = T2STransformer(self.num_layers, blocks) | |
def make_input_data(self, x, x_lens, y, y_lens, bert_feature): | |
x = self.ar_text_embedding(x) | |
x = x + self.bert_proj(bert_feature.transpose(1, 2)) | |
x = self.ar_text_position(x) | |
x_mask = make_pad_mask(x_lens) | |
y_mask = make_pad_mask(y_lens) | |
y_mask_int = y_mask.type(torch.int64) | |
codes = y.type(torch.int64) * (1 - y_mask_int) | |
# Training | |
# AR Decoder | |
y, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS) | |
x_len = x_lens.max() | |
y_len = y_lens.max() | |
y_emb = self.ar_audio_embedding(y) | |
y_pos = self.ar_audio_position(y_emb) | |
xy_padding_mask = torch.concat([x_mask, y_mask], dim=1) | |
ar_xy_padding_mask = xy_padding_mask | |
x_attn_mask = F.pad( | |
torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device), | |
(0, y_len), | |
value=True, | |
) | |
y_attn_mask = F.pad( | |
torch.triu( | |
torch.ones(y_len, y_len, dtype=torch.bool, device=x.device), | |
diagonal=1, | |
), | |
(x_len, 0), | |
value=False, | |
) | |
xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0) | |
bsz, src_len = x.shape[0], x_len + y_len | |
_xy_padding_mask = ( | |
ar_xy_padding_mask.view(bsz, 1, 1, src_len) | |
.expand(-1, self.num_head, -1, -1) | |
.reshape(bsz * self.num_head, 1, src_len) | |
) | |
xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask) | |
new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype) | |
new_attn_mask.masked_fill_(xy_attn_mask, float("-inf")) | |
xy_attn_mask = new_attn_mask | |
# x 和完整的 y 一次性输入模型 | |
xy_pos = torch.concat([x, y_pos], dim=1) | |
return xy_pos, xy_attn_mask, targets | |
def forward(self, x, x_lens, y, y_lens, bert_feature): | |
""" | |
x: phoneme_ids | |
y: semantic_ids | |
""" | |
reject_y, reject_y_lens = make_reject_y(y, y_lens) | |
xy_pos, xy_attn_mask, targets = self.make_input_data(x, x_lens, y, y_lens, bert_feature) | |
xy_dec, _ = self.h( | |
(xy_pos, None), | |
mask=xy_attn_mask, | |
) | |
x_len = x_lens.max() | |
logits = self.ar_predict_layer(xy_dec[:, x_len:]) | |
###### DPO ############# | |
reject_xy_pos, reject_xy_attn_mask, reject_targets = self.make_input_data(x, x_lens, reject_y, reject_y_lens, bert_feature) | |
reject_xy_dec, _ = self.h( | |
(reject_xy_pos, None), | |
mask=reject_xy_attn_mask, | |
) | |
x_len = x_lens.max() | |
reject_logits = self.ar_predict_layer(reject_xy_dec[:, x_len:]) | |
# loss | |
# from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum | |
loss_1 = F.cross_entropy(logits.permute(0, 2, 1), targets, reduction="sum") | |
acc = self.ar_accuracy_metric(logits.permute(0, 2, 1).detach(), targets).item() | |
A_logits, R_logits = get_batch_logps(logits, reject_logits, targets, reject_targets) | |
loss_2, _, _ = dpo_loss(A_logits, R_logits, 0, 0, 0.2, reference_free=True) | |
loss = loss_1 + loss_2 | |
return loss, acc | |
def forward_old(self, x, x_lens, y, y_lens, bert_feature): | |
""" | |
x: phoneme_ids | |
y: semantic_ids | |
""" | |
x = self.ar_text_embedding(x) | |
x = x + self.bert_proj(bert_feature.transpose(1, 2)) | |
x = self.ar_text_position(x) | |
x_mask = make_pad_mask(x_lens) | |
y_mask = make_pad_mask(y_lens) | |
y_mask_int = y_mask.type(torch.int64) | |
codes = y.type(torch.int64) * (1 - y_mask_int) | |
# Training | |
# AR Decoder | |
y, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS) | |
x_len = x_lens.max() | |
y_len = y_lens.max() | |
y_emb = self.ar_audio_embedding(y) | |
y_pos = self.ar_audio_position(y_emb) | |
xy_padding_mask = torch.concat([x_mask, y_mask], dim=1) | |
ar_xy_padding_mask = xy_padding_mask | |
x_attn_mask = F.pad( | |
torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device), | |
(0, y_len), | |
value=True, | |
) | |
y_attn_mask = F.pad( | |
torch.triu( | |
torch.ones(y_len, y_len, dtype=torch.bool, device=x.device), | |
diagonal=1, | |
), | |
(x_len, 0), | |
value=False, | |
) | |
xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0) | |
bsz, src_len = x.shape[0], x_len + y_len | |
_xy_padding_mask = ( | |
ar_xy_padding_mask.view(bsz, 1, 1, src_len) | |
.expand(-1, self.num_head, -1, -1) | |
.reshape(bsz * self.num_head, 1, src_len) | |
) | |
xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask) | |
new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype) | |
new_attn_mask.masked_fill_(xy_attn_mask, float("-inf")) | |
xy_attn_mask = new_attn_mask | |
# x 和完整的 y 一次性输入模型 | |
xy_pos = torch.concat([x, y_pos], dim=1) | |
xy_dec, _ = self.h( | |
(xy_pos, None), | |
mask=xy_attn_mask, | |
) | |
logits = self.ar_predict_layer(xy_dec[:, x_len:]).permute(0, 2, 1) | |
# loss | |
# from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum | |
loss = F.cross_entropy(logits, targets, reduction="sum") | |
acc = self.ar_accuracy_metric(logits.detach(), targets).item() | |
return loss, acc | |
# 需要看下这个函数和 forward 的区别以及没有 semantic 的时候 prompts 输入什么 | |
def infer( | |
self, | |
x, | |
x_lens, | |
prompts, | |
bert_feature, | |
top_k: int = -100, | |
early_stop_num: int = -1, | |
temperature: float = 1.0, | |
): | |
x = self.ar_text_embedding(x) | |
x = x + self.bert_proj(bert_feature.transpose(1, 2)) | |
x = self.ar_text_position(x) | |
# AR Decoder | |
y = prompts | |
prefix_len = y.shape[1] | |
x_len = x.shape[1] | |
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool) | |
stop = False | |
for _ in tqdm(range(1500)): | |
y_emb = self.ar_audio_embedding(y) | |
y_pos = self.ar_audio_position(y_emb) | |
# x 和逐渐增长的 y 一起输入给模型 | |
xy_pos = torch.concat([x, y_pos], dim=1) | |
y_len = y.shape[1] | |
x_attn_mask_pad = F.pad( | |
x_attn_mask, | |
(0, y_len), | |
value=True, | |
) | |
y_attn_mask = F.pad( | |
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1), | |
(x_len, 0), | |
value=False, | |
) | |
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to( | |
y.device | |
) | |
xy_dec, _ = self.h( | |
(xy_pos, None), | |
mask=xy_attn_mask, | |
) | |
logits = self.ar_predict_layer(xy_dec[:, -1]) | |
samples = topk_sampling( | |
logits, top_k=top_k, top_p=1.0, temperature=temperature | |
) | |
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num: | |
print("use early stop num:", early_stop_num) | |
stop = True | |
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS: | |
# print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS) | |
stop = True | |
if stop: | |
if prompts.shape[1] == y.shape[1]: | |
y = torch.concat([y, torch.zeros_like(samples)], dim=1) | |
print("bad zero prediction") | |
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]") | |
break | |
# 本次生成的 semantic_ids 和之前的 y 构成新的 y | |
# print(samples.shape)#[1,1]#第一个1是bs | |
# import os | |
# os._exit(2333) | |
y = torch.concat([y, samples], dim=1) | |
return y | |
def pad_y_eos(self, y, y_mask_int, eos_id): | |
targets = F.pad(y, (0, 1), value=0) + eos_id * F.pad( | |
y_mask_int, (0, 1), value=1 | |
) | |
# 错位 | |
return targets[:, :-1], targets[:, 1:] | |
def infer_panel_batch_infer_with_flash_attn( | |
self, | |
x, #####全部文本token | |
x_lens, | |
prompts, ####参考音频token | |
bert_feature, | |
top_k: int = -100, | |
top_p: int = 100, | |
early_stop_num: int = -1, | |
temperature: float = 1.0, | |
): | |
bert_feature = self.bert_proj(bert_feature.transpose(1, 2)) | |
x = self.ar_text_embedding(x) | |
x = x + bert_feature | |
x = self.ar_text_position(x) | |
# AR Decoder | |
y = prompts | |
x_len = x.shape[1] | |
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool) | |
stop = False | |
# print(1111111,self.num_layers) | |
k_cache = None | |
v_cache = None | |
################### first step ########################## | |
if y is not None: | |
y_emb = self.ar_audio_embedding(y) | |
y_len = y_emb.shape[1] | |
prefix_len = y.shape[1] | |
y_pos = self.ar_audio_position(y_emb) | |
xy_pos = torch.concat([x, y_pos], dim=1) | |
ref_free = False | |
else: | |
y_emb = None | |
y_len = 0 | |
prefix_len = 0 | |
y_pos = None | |
xy_pos = x | |
y = torch.zeros(x.shape[0], 0, dtype=torch.int, device=x.device) | |
ref_free = True | |
##### create mask ##### | |
bsz = x.shape[0] | |
src_len = x_len + y_len | |
y_lens = torch.LongTensor([y_len]*bsz).to(x.device) | |
y_mask = make_pad_mask(y_lens) | |
x_mask = make_pad_mask(x_lens) | |
# (bsz, x_len + y_len) | |
xy_padding_mask = torch.concat([x_mask, y_mask], dim=1) | |
x_mask = F.pad( | |
x_attn_mask, | |
(0, y_len), ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y) | |
value=True, | |
) | |
y_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y) | |
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1), | |
(x_len, 0), | |
value=False, | |
) | |
xy_mask = torch.concat([x_mask, y_mask], dim=0).view(1 , src_len, src_len).expand(bsz, -1, -1).to(x.device) | |
# xy_mask = torch.triu(torch.ones(src_len, src_len, dtype=torch.bool, device=x.device), diagonal=1) | |
xy_padding_mask = xy_padding_mask.view(bsz, 1, src_len).expand(-1, src_len, src_len) | |
xy_attn_mask = xy_mask.logical_or(xy_padding_mask) | |
xy_attn_mask = xy_attn_mask.unsqueeze(1).expand(-1, self.num_head, -1, -1) | |
new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype) | |
xy_attn_mask = new_attn_mask.masked_fill(xy_attn_mask, float("-inf")) | |
###### decode ##### | |
y_list = [None]*y.shape[0] | |
batch_idx_map = list(range(y.shape[0])) | |
idx_list = [None]*y.shape[0] | |
for idx in tqdm(range(1500)): | |
if idx == 0: | |
xy_dec, k_cache, v_cache = self.t2s_transformer.process_prompt(xy_pos, xy_attn_mask) | |
else: | |
xy_dec, k_cache, v_cache = self.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache) | |
logits = self.ar_predict_layer( | |
xy_dec[:, -1] | |
) | |
if idx == 0: | |
xy_attn_mask = None | |
logits = logits[:, :-1] | |
samples = sample( | |
logits, y, top_k=top_k, top_p=top_p, repetition_penalty=1.35, temperature=temperature | |
)[0] | |
y = torch.concat([y, samples], dim=1) | |
####### 移除batch中已经生成完毕的序列,进一步优化计算量 | |
reserved_idx_of_batch_for_y = None | |
if (self.EOS in samples[:, 0]) or \ | |
(self.EOS in torch.argmax(logits, dim=-1)): ###如果生成到EOS,则停止 | |
l = samples[:, 0]==self.EOS | |
removed_idx_of_batch_for_y = torch.where(l==True)[0].tolist() | |
reserved_idx_of_batch_for_y = torch.where(l==False)[0] | |
# batch_indexs = torch.tensor(batch_idx_map, device=y.device)[removed_idx_of_batch_for_y] | |
for i in removed_idx_of_batch_for_y: | |
batch_index = batch_idx_map[i] | |
idx_list[batch_index] = idx - 1 | |
y_list[batch_index] = y[i, :-1] | |
batch_idx_map = [batch_idx_map[i] for i in reserved_idx_of_batch_for_y.tolist()] | |
# 只保留batch中未生成完毕的序列 | |
if reserved_idx_of_batch_for_y is not None: | |
# index = torch.LongTensor(batch_idx_map).to(y.device) | |
y = torch.index_select(y, dim=0, index=reserved_idx_of_batch_for_y) | |
if k_cache is not None : | |
for i in range(len(k_cache)): | |
k_cache[i] = torch.index_select(k_cache[i], dim=0, index=reserved_idx_of_batch_for_y) | |
v_cache[i] = torch.index_select(v_cache[i], dim=0, index=reserved_idx_of_batch_for_y) | |
if (early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num) or idx==1499: | |
print("use early stop num:", early_stop_num) | |
stop = True | |
for i, batch_index in enumerate(batch_idx_map): | |
batch_index = batch_idx_map[i] | |
idx_list[batch_index] = idx | |
y_list[batch_index] = y[i, :-1] | |
if not (None in idx_list): | |
stop = True | |
if stop: | |
if y.shape[1]==0: | |
y = torch.concat([y, torch.zeros_like(samples)], dim=1) | |
print("bad zero prediction") | |
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]") | |
break | |
####################### update next step ################################### | |
y_emb = self.ar_audio_embedding(y[:, -1:]) | |
xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[:, y_len + idx].to( dtype= y_emb.dtype,device=y_emb.device) | |
if (None in idx_list): | |
for i in range(x.shape[0]): | |
if idx_list[i] is None: | |
idx_list[i] = 1500-1 ###如果没有生成到EOS,就用最大长度代替 | |
if ref_free: | |
return y_list, [0]*x.shape[0] | |
return y_list, idx_list | |
def infer_panel_batch_only( | |
self, | |
x, #####全部文本token | |
x_lens, | |
prompts, ####参考音频token | |
bert_feature, | |
top_k: int = -100, | |
top_p: int = 100, | |
early_stop_num: int = -1, | |
temperature: float = 1.0, | |
): | |
x = self.ar_text_embedding(x) | |
x = x + self.bert_proj(bert_feature.transpose(1, 2)) | |
x = self.ar_text_position(x) | |
# AR Decoder | |
y = prompts | |
x_len = x.shape[1] | |
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool) | |
stop = False | |
# print(1111111,self.num_layers) | |
cache = { | |
"all_stage": self.num_layers, | |
"k": [None] * self.num_layers, ###根据配置自己手写 | |
"v": [None] * self.num_layers, | |
# "xy_pos":None,##y_pos位置编码每次都不一样的没法缓存,每次都要重新拼xy_pos.主要还是写法原因,其实是可以历史统一一样的,但也没啥计算量就不管了 | |
"y_emb": None, ##只需要对最新的samples求emb,再拼历史的就行 | |
# "logits":None,###原版就已经只对结尾求再拼接了,不用管 | |
# "xy_dec":None,###不需要,本来只需要最后一个做logits | |
"first_infer": 1, | |
"stage": 0, | |
} | |
################### first step ########################## | |
if y is not None: | |
y_emb = self.ar_audio_embedding(y) | |
y_len = y_emb.shape[1] | |
prefix_len = y.shape[1] | |
y_pos = self.ar_audio_position(y_emb) | |
xy_pos = torch.concat([x, y_pos], dim=1) | |
cache["y_emb"] = y_emb | |
ref_free = False | |
else: | |
y_emb = None | |
y_len = 0 | |
prefix_len = 0 | |
y_pos = None | |
xy_pos = x | |
y = torch.zeros(x.shape[0], 0, dtype=torch.int, device=x.device) | |
ref_free = True | |
##### create mask ##### | |
bsz = x.shape[0] | |
src_len = x_len + y_len | |
y_lens = torch.LongTensor([y_len]*bsz).to(x.device) | |
y_mask = make_pad_mask(y_lens) | |
x_mask = make_pad_mask(x_lens) | |
# (bsz, x_len + y_len) | |
xy_padding_mask = torch.concat([x_mask, y_mask], dim=1) | |
x_mask = F.pad( | |
x_attn_mask, | |
(0, y_len), ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y) | |
value=True, | |
) | |
y_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y) | |
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1), | |
(x_len, 0), | |
value=False, | |
) | |
xy_mask = torch.concat([x_mask, y_mask], dim=0).view(1 , src_len, src_len).expand(bsz*self.num_head, -1, -1).to(x.device) | |
# xy_mask = torch.triu(torch.ones(src_len, src_len, dtype=torch.bool, device=x.device), diagonal=1) | |
xy_padding_mask = xy_padding_mask.view(bsz, 1, src_len).expand(bsz, src_len, src_len).repeat(self.num_head, 1, 1) | |
xy_attn_mask = xy_mask.logical_or(xy_padding_mask) | |
new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype) | |
xy_attn_mask = new_attn_mask.masked_fill(xy_attn_mask, float("-inf")) | |
y_list = [None]*y.shape[0] | |
batch_idx_map = list(range(y.shape[0])) | |
idx_list = [None]*y.shape[0] | |
for idx in tqdm(range(1500)): | |
xy_dec, _ = self.h((xy_pos, None), mask=xy_attn_mask, cache=cache) | |
logits = self.ar_predict_layer( | |
xy_dec[:, -1] | |
) ##不用改,如果用了cache的默认就是只有一帧,取最后一帧一样的 | |
# samples = topk_sampling(logits, top_k=top_k, top_p=1.0, temperature=temperature) | |
if(idx==0):###第一次跑不能EOS否则没有了 | |
logits = logits[:, :-1] ###刨除1024终止符号的概率 | |
samples = sample( | |
logits, y, top_k=top_k, top_p=top_p, repetition_penalty=1.35, temperature=temperature | |
)[0] | |
# 本次生成的 semantic_ids 和之前的 y 构成新的 y | |
# print(samples.shape)#[1,1]#第一个1是bs | |
y = torch.concat([y, samples], dim=1) | |
# 移除已经生成完毕的序列 | |
reserved_idx_of_batch_for_y = None | |
if (self.EOS in torch.argmax(logits, dim=-1)) or \ | |
(self.EOS in samples[:, 0]): ###如果生成到EOS,则停止 | |
l = samples[:, 0]==self.EOS | |
removed_idx_of_batch_for_y = torch.where(l==True)[0].tolist() | |
reserved_idx_of_batch_for_y = torch.where(l==False)[0] | |
# batch_indexs = torch.tensor(batch_idx_map, device=y.device)[removed_idx_of_batch_for_y] | |
for i in removed_idx_of_batch_for_y: | |
batch_index = batch_idx_map[i] | |
idx_list[batch_index] = idx - 1 | |
y_list[batch_index] = y[i, :-1] | |
batch_idx_map = [batch_idx_map[i] for i in reserved_idx_of_batch_for_y.tolist()] | |
# 只保留未生成完毕的序列 | |
if reserved_idx_of_batch_for_y is not None: | |
# index = torch.LongTensor(batch_idx_map).to(y.device) | |
y = torch.index_select(y, dim=0, index=reserved_idx_of_batch_for_y) | |
if cache["y_emb"] is not None: | |
cache["y_emb"] = torch.index_select(cache["y_emb"], dim=0, index=reserved_idx_of_batch_for_y) | |
if cache["k"] is not None: | |
for i in range(self.num_layers): | |
# 因为kv转置了,所以batch dim是1 | |
cache["k"][i] = torch.index_select(cache["k"][i], dim=1, index=reserved_idx_of_batch_for_y) | |
cache["v"][i] = torch.index_select(cache["v"][i], dim=1, index=reserved_idx_of_batch_for_y) | |
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num: | |
print("use early stop num:", early_stop_num) | |
stop = True | |
if not (None in idx_list): | |
# print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS) | |
stop = True | |
if stop: | |
# if prompts.shape[1] == y.shape[1]: | |
# y = torch.concat([y, torch.zeros_like(samples)], dim=1) | |
# print("bad zero prediction") | |
if y.shape[1]==0: | |
y = torch.concat([y, torch.zeros_like(samples)], dim=1) | |
print("bad zero prediction") | |
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]") | |
break | |
####################### update next step ################################### | |
cache["first_infer"] = 0 | |
if cache["y_emb"] is not None: | |
y_emb = torch.cat( | |
[cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], dim = 1 | |
) | |
cache["y_emb"] = y_emb | |
y_pos = self.ar_audio_position(y_emb) | |
xy_pos = y_pos[:, -1:] | |
else: | |
y_emb = self.ar_audio_embedding(y[:, -1:]) | |
cache["y_emb"] = y_emb | |
y_pos = self.ar_audio_position(y_emb) | |
xy_pos = y_pos | |
y_len = y_pos.shape[1] | |
###最右边一列(是错的) | |
# xy_attn_mask=torch.ones((1, x_len+y_len), dtype=torch.bool,device=xy_pos.device) | |
# xy_attn_mask[:,-1]=False | |
###最下面一行(是对的) | |
xy_attn_mask = torch.zeros( | |
(1, x_len + y_len), dtype=torch.bool, device=xy_pos.device | |
) | |
if (None in idx_list): | |
for i in range(x.shape[0]): | |
if idx_list[i] is None: | |
idx_list[i] = 1500-1 ###如果没有生成到EOS,就用最大长度代替 | |
if ref_free: | |
return y_list, [0]*x.shape[0] | |
return y_list, idx_list |