Spaces:
Running
Running
File size: 16,180 Bytes
6962fb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import gradio as gr
import os, json
# 在开头加入路径
import os, sys
now_dir = os.getcwd()
sys.path.append(now_dir)
# sys.path.append(os.path.join(now_dir, "tools"))
global state
state = { 'models_path': r"trained",
'character_list': [],
'edited_character_path': '',
'edited_character_name': '',
'ckpt_file_found': [],
'pth_file_found': [],
'wav_file_found': [],
}
global infer_config
infer_config = {
}
# 取得模型文件夹路径
config_path = os.path.join(os.path.dirname(os.path.dirname(__file__)), "config.json")
if os.path.exists(config_path):
with open(config_path, 'r', encoding='utf-8') as f:
config = json.load(f)
state["models_path"] = config.get("models_path", "trained")
locale_language = str(config.get("locale", "auto"))
locale_language = None if locale_language.lower() == "auto" else locale_language
from tools.i18n.i18n import I18nAuto
i18n = I18nAuto(locale_language ,os.path.join(os.path.dirname(os.path.dirname(__file__)), "i18n/locale"))
# 微软提供的SSML情感表
emotional_styles = [
"default",
"advertisement_upbeat", "affectionate", "angry", "assistant", "calm", "chat", "cheerful",
"customerservice", "depressed", "disgruntled", "documentary-narration", "embarrassed",
"empathetic", "envious", "excited", "fearful", "friendly", "gentle", "hopeful", "lyrical",
"narration-professional", "narration-relaxed", "newscast", "newscast-casual", "newscast-formal",
"poetry-reading", "sad", "serious", "shouting", "sports_commentary", "sports_commentary_excited",
"whispering", "terrified", "unfriendly"
]
language_list = ["auto", "zh", "en", "ja", "all_zh", "all_ja"]
translated_language_list = [i18n(language) for language in language_list]
language_dict = dict(zip(translated_language_list, language_list))
translated_language_dict = dict(zip(language_list, translated_language_list))
translated_language_dict.update(dict(zip(language_list, language_list)))
translated_language_dict.update(dict(zip(translated_language_list, translated_language_list)))
translated_language_dict["多语种混合"] = i18n("auto")
# 预先建立相当数量的情感选择框
all_emotion_num=len(emotional_styles)
def generate_info_bar():
current_character_textbox = gr.Textbox(value=state['edited_character_name'], label=i18n("当前人物"), interactive=False)
version_textbox = gr.Textbox(value=infer_config['version'], label=i18n("版本"), interactive=True)
gpt_model_dropdown = gr.Dropdown(choices=state['ckpt_file_found'], label=i18n("GPT模型路径"), interactive=True, value=infer_config['gpt_path'], allow_custom_value=True)
sovits_model_dropdown = gr.Dropdown(choices=state['pth_file_found'], label=i18n("Sovits模型路径"), interactive=True, value=infer_config['sovits_path'], allow_custom_value=True)
column_items = [current_character_textbox, version_textbox, gpt_model_dropdown, sovits_model_dropdown]
index = 0
for item in infer_config['emotion_list']:
emotion, details = item
index += 1
column_items.append(gr.Number(index, visible=True, scale=1))
column_items.append(gr.Dropdown(choices=translated_language_list, value=translated_language_dict[details['prompt_language']], visible=True, interactive=True, scale=3, label=i18n("提示语言")))
column_items.append(gr.Dropdown(choices=emotional_styles, value=emotion, visible=True, interactive=True, scale=3, allow_custom_value=True, label=i18n("情感风格")))
column_items.append(gr.Dropdown(choices=state["wav_file_found"], visible=True, value=details['ref_wav_path'], scale=8, allow_custom_value=True, label=i18n("参考音频路径")))
column_items.append(gr.Textbox(value=details['prompt_text'], visible=True, scale=8, interactive=True, label=i18n("提示文本")))
column_items.append(gr.Audio(os.path.join(state["edited_character_path"], details['ref_wav_path']), visible=True, scale=8, label=i18n("音频预览")))
for i in range(all_emotion_num - index):
column_items.append(gr.Number(i, visible=False))
column_items.append(gr.Dropdown(visible=False))
column_items.append(gr.Dropdown(visible=False))
column_items.append(gr.Dropdown(visible=False))
column_items.append(gr.Textbox(visible=False))
column_items.append(gr.Audio(None, visible=False))
return column_items
def load_json_to_state(data):
infer_config['version'] = data.get('version','')
emotional_list = data.get('emotion_list',{})
for emotion, details in emotional_list.items():
infer_config['emotion_list'].append([emotion,details])
infer_config['gpt_path'] = data['gpt_path']
infer_config['sovits_path'] = data['sovits_path']
return generate_info_bar()
def split_file_name(file_name):
try :
base_name=os.path.basename(file_name)
except:
base_name=file_name
final_name = os.path.splitext(base_name)[0]
return final_name
def clear_infer_config():
global infer_config
infer_config = {
'version': '1.0.1',
'gpt_path': '',
'sovits_path': '',
'emotion_list': [],
}
clear_infer_config()
def read_json_from_file(character_dropdown,models_path ):
state['edited_character_name'] = character_dropdown
state['models_path']=models_path
state['edited_character_path'] = os.path.join(state['models_path'], state['edited_character_name'])
state['ckpt_file_found'], state['pth_file_found'], state['wav_file_found'] = scan_files(state['edited_character_path'])
print(i18n("当前人物变更为: ")+state['edited_character_name'])
clear_infer_config()
json_path = os.path.join(state['edited_character_path'], "infer_config.json")
# 从json文件中读取数据
with open(json_path, "r", encoding='utf-8') as f:
data = json.load(f)
return load_json_to_state(data)
def save_json():
if infer_config['gpt_path'] == '' or infer_config['gpt_path'] is None:
gr.Error(i18n("缺失某些项,保存失败!"))
raise Exception(i18n("缺失某些项,保存失败!"))
json_path = os.path.join(state['edited_character_path'], "infer_config.json")
data = {
'version': infer_config['version'],
'gpt_path': infer_config['gpt_path'],
'sovits_path': infer_config['sovits_path'],
i18n("简介"): i18n(r"这是一个配置文件适用于https://github.com/X-T-E-R/TTS-for-GPT-soVITS,是一个简单好用的前后端项目"),
'emotion_list': {}
}
for item in infer_config['emotion_list']:
data['emotion_list'][item[0]] = item[1]
try:
# 将state中的数据保存到json文件中
with open(json_path, "w", encoding='utf-8') as f:
json.dump(data, f, ensure_ascii=False, indent=4)
gr.Info(i18n("保存成功!"))
except:
gr.Error(i18n("文件打开失败,保存失败!"))
raise Exception(i18n("保存失败!"))
def scan_files(character_path):
ckpt_file_found = []
pth_file_found = []
wav_file_found = []
# 扫描3种文件
for dirpath, dirnames, filenames in os.walk(character_path):
for file in filenames:
# 构建文件的完整路径
full_path = os.path.join(dirpath, file)
rev_path = os.path.relpath(full_path, character_path)
print(full_path)
# 根据文件扩展名和变量是否已赋值来更新变量
if file.lower().endswith(".ckpt"):
ckpt_file_found.append(rev_path)
elif file.lower().endswith(".pth"):
pth_file_found.append(rev_path)
elif file.lower().endswith(".wav"):
wav_file_found.append(rev_path)
return ckpt_file_found, pth_file_found, wav_file_found
def auto_generate_json(character_dropdown, models_path):
# 将选中人物设定为当前人物
state['edited_character_name'] = character_dropdown
state['models_path'] = models_path
state['edited_character_path'] = os.path.join(state['models_path'], state['edited_character_name'])
print(i18n(f"当前人物变更为: {state['edited_character_name']}"))
clear_infer_config()
character_path = state['edited_character_path']
ckpt_file_found, pth_file_found, wav_file_found = scan_files(character_path)
if len(ckpt_file_found) == 0 or len(pth_file_found) == 0:
gr.Error(i18n("找不到模型文件!请把有效文件放置在文件夹下!!!"))
raise Exception(i18n("找不到模型文件!请把有效文件放置在文件夹下!!!"))
else:
state['ckpt_file_found'] = ckpt_file_found
state['pth_file_found'] = pth_file_found
state['wav_file_found'] = wav_file_found
gpt_path = ckpt_file_found[0]
sovits_path = pth_file_found[0]
infer_config['gpt_path'] = gpt_path
infer_config['sovits_path'] = sovits_path
if len(wav_file_found) == 0:
return generate_info_bar()
else:
return add_emotion()
def scan_subfolder(models_path):
subfolders = [os.path.basename(f.path) for f in os.scandir(models_path) if f.is_dir()]
state['models_path'] = models_path
state['character_list'] = subfolders
print(i18n("扫描模型文件夹:")+models_path)
print(i18n(f"找到的角色列表:") + str(subfolders))
gr.Info(i18n(f"找到的角色列表:") + str(subfolders))
d2 = gr.Dropdown(subfolders)
return d2
def add_emotion():
unused_emotional_style = ''
for style in emotional_styles:
style_in_list = False
for item in infer_config['emotion_list']:
if style == item[0]:
style_in_list = True
break
if not style_in_list:
unused_emotional_style = style
break
ref_wav_path = state['wav_file_found'][0]
infer_config['emotion_list'].append([f'{unused_emotional_style}', {
'ref_wav_path':ref_wav_path,'prompt_text':split_file_name(ref_wav_path),'prompt_language':'auto'}])
return generate_info_bar()
def change_pt_files(version_textbox, sovits_model_dropdown, gpt_model_dropdown):
infer_config['version'] = version_textbox
infer_config['sovits_path'] = sovits_model_dropdown
infer_config['gpt_path'] = gpt_model_dropdown
pass
def change_parameters(index, wav_path, emotion_list, prompt_language, prompt_text = ""):
# Convert index to integer in case it's passed as a string
index = int(index)
if prompt_text=="" or prompt_text is None:
prompt_text = split_file_name(wav_path)
infer_config['emotion_list'][index-1][0]=emotion_list
infer_config['emotion_list'][index-1][1]['ref_wav_path'] = wav_path
infer_config['emotion_list'][index-1][1]['prompt_text'] = prompt_text
infer_config['emotion_list'][index-1][1]['prompt_language'] = language_dict[prompt_language]
return gr.Dropdown(value=wav_path), gr.Dropdown(value=emotion_list), gr.Dropdown(value=prompt_language), gr.Textbox(value=prompt_text), gr.Audio(os.path.join(state["edited_character_path"],wav_path))
with gr.Blocks() as app:
with gr.Row() as status_bar:
# 创建模型文件夹路径的输入框
models_path = gr.Textbox(value=state["models_path"], label=i18n("模型文件夹路径"), scale=3)
# 创建扫描按钮并设置点击事件
scan_button = gr.Button(i18n("扫描"), scale=1, variant="primary")
# 创建角色列表的下拉菜单,初始为空
character_dropdown = gr.Dropdown([], label=i18n("选择角色"), scale=3)
# 创建从json中读取按钮并设置点击事件
read_info_from_json_button = gr.Button(i18n("从json中读取"), size="lg", scale=2, variant="secondary")
# 创建自动生成json的按钮并设置点击事件
auto_generate_info_button = gr.Button(i18n("自动生成info"), size="lg", scale=2, variant="primary")
scan_button.click(scan_subfolder, inputs=[models_path], outputs=[character_dropdown])
gr.HTML(i18n("""<p>这是模型管理界面,为了实现对多段参考音频分配情感设计,如果您只有一段可不使用这个界面</p><p>若有疑问或需要进一步了解,可参考文档:<a href="https://www.yuque.com/xter/zibxlp/hme8bw2r28vad3le">点击查看详细文档</a>。</p>"""))
gr.Markdown(i18n("请修改后点击下方按钮进行保存"))
# 创建保存json的按钮并设置点击事件
with gr.Row() as submit_bar:
save_json_button = gr.Button(i18n("保存json\n(可能不会有完成提示,没报错就是成功)"), scale=2, variant="primary")
save_json_button.click(save_json)
# 模型信息
with gr.Row():
with gr.Column(scale=1):
current_character_textbox = gr.Textbox(value=state['edited_character_name'], label=i18n("当前人物"), interactive=False)
version_textbox = gr.Textbox(value=infer_config['version'], label=i18n("版本"))
gpt_model_dropdown = gr.Dropdown(choices=state['ckpt_file_found'], label=i18n("GPT模型路径"))
sovits_model_dropdown = gr.Dropdown(choices=state['pth_file_found'], label=i18n("Sovits模型路径"))
version_textbox.blur(change_pt_files, inputs=[version_textbox, sovits_model_dropdown, gpt_model_dropdown], outputs=None)
gpt_model_dropdown.input(change_pt_files, inputs=[version_textbox, sovits_model_dropdown, gpt_model_dropdown], outputs=None)
sovits_model_dropdown.input(change_pt_files, inputs=[version_textbox, sovits_model_dropdown, gpt_model_dropdown], outputs=None)
column_items = [current_character_textbox, version_textbox, gpt_model_dropdown, sovits_model_dropdown]
with gr.Column(scale=3):
add_emotion_button = gr.Button(i18n("添加情感"), size="lg", scale=2, variant="primary")
for index in range(all_emotion_num):
with gr.Row() as emotion_row:
row_index = gr.Number(visible=False)
emotional_list = gr.Dropdown(visible=False)
prompt_language = gr.Dropdown(visible=False)
wav_path = gr.Dropdown(visible=False)
prompt_text = gr.Textbox(visible=False)
audio_preview = gr.Audio(visible=False, type="filepath")
emotional_list.input(change_parameters, inputs=[row_index, wav_path, emotional_list, prompt_language, prompt_text], outputs=[wav_path, emotional_list, prompt_language, prompt_text, audio_preview])
prompt_language.input(change_parameters, inputs=[row_index, wav_path, emotional_list, prompt_language, prompt_text], outputs=[wav_path, emotional_list, prompt_language, prompt_text, audio_preview])
wav_path.input(change_parameters, inputs=[row_index, wav_path, emotional_list, prompt_language], outputs=[wav_path, emotional_list, prompt_language, prompt_text, audio_preview])
prompt_text.input(change_parameters, inputs=[row_index, wav_path, emotional_list, prompt_language, prompt_text], outputs=[wav_path, emotional_list, prompt_language, prompt_text, audio_preview])
column_items.append(row_index)
column_items.append(prompt_language)
column_items.append(emotional_list)
column_items.append(wav_path)
column_items.append(prompt_text)
column_items.append(audio_preview)
add_emotion_button.click(add_emotion, outputs=column_items)
read_info_from_json_button.click(read_json_from_file, inputs=[character_dropdown,models_path] , outputs=column_items)
auto_generate_info_button.click(auto_generate_json, inputs=[character_dropdown,models_path], outputs=column_items)
app.launch(server_port=9868, show_error=True,debug=True, inbrowser=True)
|