File size: 18,916 Bytes
6962fb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/t2s_model.py
import torch
from tqdm import tqdm

from AR.models.utils import make_pad_mask
from AR.models.utils import (
    topk_sampling,
    sample,
    logits_to_probs,
    multinomial_sample_one_no_sync,
    dpo_loss,
    make_reject_y, 
    get_batch_logps
)
from AR.modules.embedding import SinePositionalEmbedding
from AR.modules.embedding import TokenEmbedding
from AR.modules.transformer import LayerNorm
from AR.modules.transformer import TransformerEncoder
from AR.modules.transformer import TransformerEncoderLayer
from torch import nn
from torch.nn import functional as F
from torchmetrics.classification import MulticlassAccuracy

default_config = {
    "embedding_dim": 512,
    "hidden_dim": 512,
    "num_head": 8,
    "num_layers": 12,
    "num_codebook": 8,
    "p_dropout": 0.0,
    "vocab_size": 1024 + 1,
    "phoneme_vocab_size": 512,
    "EOS": 1024,
}


class Text2SemanticDecoder(nn.Module):
    def __init__(self, config, norm_first=False, top_k=3):
        super(Text2SemanticDecoder, self).__init__()
        self.model_dim = config["model"]["hidden_dim"]
        self.embedding_dim = config["model"]["embedding_dim"]
        self.num_head = config["model"]["head"]
        self.num_layers = config["model"]["n_layer"]
        self.norm_first = norm_first
        self.vocab_size = config["model"]["vocab_size"]
        self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"]
        self.p_dropout = config["model"]["dropout"]
        self.EOS = config["model"]["EOS"]
        self.norm_first = norm_first
        assert self.EOS == self.vocab_size - 1
        # should be same as num of kmeans bin
        # assert self.EOS == 1024
        self.bert_proj = nn.Linear(1024, self.embedding_dim)
        self.ar_text_embedding = TokenEmbedding(
            self.embedding_dim, self.phoneme_vocab_size, self.p_dropout
        )
        self.ar_text_position = SinePositionalEmbedding(
            self.embedding_dim, dropout=0.1, scale=False, alpha=True
        )
        self.ar_audio_embedding = TokenEmbedding(
            self.embedding_dim, self.vocab_size, self.p_dropout
        )
        self.ar_audio_position = SinePositionalEmbedding(
            self.embedding_dim, dropout=0.1, scale=False, alpha=True
        )

        self.h = TransformerEncoder(
            TransformerEncoderLayer(
                d_model=self.model_dim,
                nhead=self.num_head,
                dim_feedforward=self.model_dim * 4,
                dropout=0.1,
                batch_first=True,
                norm_first=norm_first,
            ),
            num_layers=self.num_layers,
            norm=LayerNorm(self.model_dim) if norm_first else None,
        )

        self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False)
        self.loss_fct = nn.CrossEntropyLoss(reduction="sum")

        self.ar_accuracy_metric = MulticlassAccuracy(
            self.vocab_size,
            top_k=top_k,
            average="micro",
            multidim_average="global",
            ignore_index=self.EOS,
        )

    def make_input_data(self, x, x_lens, y, y_lens, bert_feature):
        x = self.ar_text_embedding(x)
        x = x + self.bert_proj(bert_feature.transpose(1, 2))
        x = self.ar_text_position(x)
        x_mask = make_pad_mask(x_lens)

        y_mask = make_pad_mask(y_lens)
        y_mask_int = y_mask.type(torch.int64)
        codes = y.type(torch.int64) * (1 - y_mask_int)

        # Training
        # AR Decoder
        y, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS)
        x_len = x_lens.max()
        y_len = y_lens.max()
        y_emb = self.ar_audio_embedding(y)
        y_pos = self.ar_audio_position(y_emb)

        xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)

        ar_xy_padding_mask = xy_padding_mask

        x_attn_mask = F.pad(
            torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device),
            (0, y_len),
            value=True,
        )
        
        y_attn_mask = F.pad(
            torch.triu(
                torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
                diagonal=1,
            ),
            (x_len, 0),
            value=False,
        )

        xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
        bsz, src_len = x.shape[0], x_len + y_len
        _xy_padding_mask = (
            ar_xy_padding_mask.view(bsz, 1, 1, src_len)
            .expand(-1, self.num_head, -1, -1)
            .reshape(bsz * self.num_head, 1, src_len)
        )
        xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
        new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
        new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
        xy_attn_mask = new_attn_mask
        # x 和完整的 y 一次性输入模型
        xy_pos = torch.concat([x, y_pos], dim=1)

        return xy_pos, xy_attn_mask, targets

    def forward(self, x, x_lens, y, y_lens, bert_feature):
        """
        x: phoneme_ids
        y: semantic_ids
        """

        reject_y, reject_y_lens = make_reject_y(y, y_lens)

        xy_pos, xy_attn_mask, targets = self.make_input_data(x, x_lens, y, y_lens, bert_feature)

        xy_dec, _ = self.h(
            (xy_pos, None),
            mask=xy_attn_mask,
        )
        x_len = x_lens.max()
        logits = self.ar_predict_layer(xy_dec[:, x_len:])

        ###### DPO #############
        reject_xy_pos, reject_xy_attn_mask, reject_targets = self.make_input_data(x, x_lens, reject_y, reject_y_lens, bert_feature)

        reject_xy_dec, _ = self.h(
            (reject_xy_pos, None),
            mask=reject_xy_attn_mask,
        )
        x_len = x_lens.max()
        reject_logits = self.ar_predict_layer(reject_xy_dec[:, x_len:])

        # loss
        # from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum

        loss_1 = F.cross_entropy(logits.permute(0, 2, 1), targets, reduction="sum")
        acc = self.ar_accuracy_metric(logits.permute(0, 2, 1).detach(), targets).item()

        A_logits, R_logits = get_batch_logps(logits, reject_logits, targets, reject_targets)
        loss_2, _, _ = dpo_loss(A_logits, R_logits, 0, 0, 0.2, reference_free=True)
        
        loss = loss_1 + loss_2

        return loss, acc

    def forward_old(self, x, x_lens, y, y_lens, bert_feature):
        """
        x: phoneme_ids
        y: semantic_ids
        """
        x = self.ar_text_embedding(x)
        x = x + self.bert_proj(bert_feature.transpose(1, 2))
        x = self.ar_text_position(x)
        x_mask = make_pad_mask(x_lens)

        y_mask = make_pad_mask(y_lens)
        y_mask_int = y_mask.type(torch.int64)
        codes = y.type(torch.int64) * (1 - y_mask_int)

        # Training
        # AR Decoder
        y, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS)
        x_len = x_lens.max()
        y_len = y_lens.max()
        y_emb = self.ar_audio_embedding(y)
        y_pos = self.ar_audio_position(y_emb)

        xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
        ar_xy_padding_mask = xy_padding_mask

        x_attn_mask = F.pad(
            torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device),
            (0, y_len),
            value=True,
        )
        y_attn_mask = F.pad(
            torch.triu(
                torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
                diagonal=1,
            ),
            (x_len, 0),
            value=False,
        )
        xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
        bsz, src_len = x.shape[0], x_len + y_len
        _xy_padding_mask = (
            ar_xy_padding_mask.view(bsz, 1, 1, src_len)
            .expand(-1, self.num_head, -1, -1)
            .reshape(bsz * self.num_head, 1, src_len)
        )
        xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
        new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
        new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
        xy_attn_mask = new_attn_mask
        # x 和完整的 y 一次性输入模型
        xy_pos = torch.concat([x, y_pos], dim=1)
        xy_dec, _ = self.h(
            (xy_pos, None),
            mask=xy_attn_mask,
        )
        logits = self.ar_predict_layer(xy_dec[:, x_len:]).permute(0, 2, 1)
        # loss
        # from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum
        loss = F.cross_entropy(logits, targets, reduction="sum")
        acc = self.ar_accuracy_metric(logits.detach(), targets).item()
        return loss, acc

    # 需要看下这个函数和 forward 的区别以及没有 semantic 的时候 prompts 输入什么
    def infer(
        self,
        x,
        x_lens,
        prompts,
        bert_feature,
        top_k: int = -100,
        early_stop_num: int = -1,
        temperature: float = 1.0,
    ):
        x = self.ar_text_embedding(x)
        x = x + self.bert_proj(bert_feature.transpose(1, 2))
        x = self.ar_text_position(x)

        # AR Decoder
        y = prompts
        prefix_len = y.shape[1]
        x_len = x.shape[1]
        x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
        stop = False
        for _ in tqdm(range(1500)):
            y_emb = self.ar_audio_embedding(y)
            y_pos = self.ar_audio_position(y_emb)
            # x 和逐渐增长的 y 一起输入给模型
            xy_pos = torch.concat([x, y_pos], dim=1)
            y_len = y.shape[1]
            x_attn_mask_pad = F.pad(
                x_attn_mask,
                (0, y_len),
                value=True,
            )
            y_attn_mask = F.pad(
                torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
                (x_len, 0),
                value=False,
            )
            xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(
                y.device
            )

            xy_dec, _ = self.h(
                (xy_pos, None),
                mask=xy_attn_mask,
            )
            logits = self.ar_predict_layer(xy_dec[:, -1])
            samples = topk_sampling(
                logits, top_k=top_k, top_p=1.0, temperature=temperature
            )

            if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
                print("use early stop num:", early_stop_num)
                stop = True

            if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
                # print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
                stop = True
            if stop:
                if prompts.shape[1] == y.shape[1]:
                    y = torch.concat([y, torch.zeros_like(samples)], dim=1)
                    print("bad zero prediction")
                print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
                break
            # 本次生成的 semantic_ids 和之前的 y 构成新的 y
            # print(samples.shape)#[1,1]#第一个1是bs
            # import os
            # os._exit(2333)
            y = torch.concat([y, samples], dim=1)
        return y

    def pad_y_eos(self, y, y_mask_int, eos_id):
        targets = F.pad(y, (0, 1), value=0) + eos_id * F.pad(
            y_mask_int, (0, 1), value=1
        )
        # 错位
        return targets[:, :-1], targets[:, 1:]

    def infer_panel(
        self,
        x,  #####全部文本token
        x_lens,
        prompts,  ####参考音频token
        bert_feature,
        top_k: int = -100,
        top_p: int = 100,
        early_stop_num: int = -1,
        temperature: float = 1.0,
    ):
        x = self.ar_text_embedding(x)
        x = x + self.bert_proj(bert_feature.transpose(1, 2))
        x = self.ar_text_position(x)

        # AR Decoder
        y = prompts
        
        x_len = x.shape[1]
        x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
        stop = False
        # print(1111111,self.num_layers)
        cache = {
            "all_stage": self.num_layers,
            "k": [None] * self.num_layers,  ###根据配置自己手写
            "v": [None] * self.num_layers,
            # "xy_pos":None,##y_pos位置编码每次都不一样的没法缓存,每次都要重新拼xy_pos.主要还是写法原因,其实是可以历史统一一样的,但也没啥计算量就不管了
            "y_emb": None,  ##只需要对最新的samples求emb,再拼历史的就行
            # "logits":None,###原版就已经只对结尾求再拼接了,不用管
            # "xy_dec":None,###不需要,本来只需要最后一个做logits
            "first_infer": 1,
            "stage": 0,
        }
        ###################  first step ##########################
        if y is not None:
            y_emb = self.ar_audio_embedding(y)
            y_len = y_emb.shape[1]
            prefix_len = y.shape[1]
            y_pos = self.ar_audio_position(y_emb)
            xy_pos = torch.concat([x, y_pos], dim=1)
            cache["y_emb"] = y_emb
            ref_free = False
        else:
            y_emb = None
            y_len = 0
            prefix_len = 0
            y_pos = None
            xy_pos = x
            y = torch.zeros(x.shape[0], 0, dtype=torch.int, device=x.device)
            ref_free = True

        x_attn_mask_pad = F.pad(
                    x_attn_mask,
                    (0, y_len),  ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y)
                    value=True,
                )
        y_attn_mask = F.pad(  ###yy的右上1扩展到左边xy的0,(y,x+y)
            torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
            (x_len, 0),
            value=False,
        )
        xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(
            x.device
        )
        
        y_list = [None]*y.shape[0]
        batch_idx_map = list(range(y.shape[0]))
        idx_list = [None]*y.shape[0]
        for idx in tqdm(range(1500)):
            
            xy_dec, _ = self.h((xy_pos, None), mask=xy_attn_mask, cache=cache)
            logits = self.ar_predict_layer(
                xy_dec[:, -1]
            )  ##不用改,如果用了cache的默认就是只有一帧,取最后一帧一样的
            # samples = topk_sampling(logits, top_k=top_k, top_p=1.0, temperature=temperature)
            if(idx==0):###第一次跑不能EOS否则没有了
                logits = logits[:, :-1]  ###刨除1024终止符号的概率
            samples = sample(
                logits, y, top_k=top_k, top_p=top_p, repetition_penalty=1.35, temperature=temperature
            )[0]
            # 本次生成的 semantic_ids 和之前的 y 构成新的 y
            # print(samples.shape)#[1,1]#第一个1是bs
            y = torch.concat([y, samples], dim=1) 

            # 移除已经生成完毕的序列
            reserved_idx_of_batch_for_y = None
            if (self.EOS in torch.argmax(logits, dim=-1)) or \
                (self.EOS in samples[:, 0]):  ###如果生成到EOS,则停止
                    l = samples[:, 0]==self.EOS
                    removed_idx_of_batch_for_y = torch.where(l==True)[0].tolist()
                    reserved_idx_of_batch_for_y = torch.where(l==False)[0]
                    # batch_indexs = torch.tensor(batch_idx_map, device=y.device)[removed_idx_of_batch_for_y]
                    for i in removed_idx_of_batch_for_y:
                        batch_index = batch_idx_map[i]
                        idx_list[batch_index] = idx - 1
                        y_list[batch_index] = y[i, :-1]
                
                    batch_idx_map = [batch_idx_map[i] for i in reserved_idx_of_batch_for_y.tolist()]
                
            # 只保留未生成完毕的序列 
            if reserved_idx_of_batch_for_y is not None:
                # index = torch.LongTensor(batch_idx_map).to(y.device)
                y = torch.index_select(y, dim=0, index=reserved_idx_of_batch_for_y)
                if cache["y_emb"] is not None:
                    cache["y_emb"] = torch.index_select(cache["y_emb"], dim=0, index=reserved_idx_of_batch_for_y)
                if cache["k"] is not None:
                    for i in range(self.num_layers):
                        # 因为kv转置了,所以batch dim是1
                        cache["k"][i] = torch.index_select(cache["k"][i], dim=1, index=reserved_idx_of_batch_for_y)
                        cache["v"][i] = torch.index_select(cache["v"][i], dim=1, index=reserved_idx_of_batch_for_y)
                
                
            if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
                print("use early stop num:", early_stop_num)
                stop = True
                
            if not (None in idx_list):
                # print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
                stop = True
            if stop:
                # if prompts.shape[1] == y.shape[1]:
                #     y = torch.concat([y, torch.zeros_like(samples)], dim=1)
                #     print("bad zero prediction")
                if y.shape[1]==0:
                    y = torch.concat([y, torch.zeros_like(samples)], dim=1)
                    print("bad zero prediction")
                print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
                break
            
            ####################### update next step ###################################
            cache["first_infer"] = 0
            if cache["y_emb"] is not None:
                y_emb = torch.cat(
                    [cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], dim = 1
                )
                cache["y_emb"] = y_emb
                y_pos = self.ar_audio_position(y_emb)
                xy_pos = y_pos[:, -1:]
            else:
                y_emb = self.ar_audio_embedding(y[:, -1:])
                cache["y_emb"] = y_emb
                y_pos = self.ar_audio_position(y_emb)
                xy_pos = y_pos
            y_len = y_pos.shape[1]

            ###最右边一列(是错的)
            # xy_attn_mask=torch.ones((1, x_len+y_len), dtype=torch.bool,device=xy_pos.device)
            # xy_attn_mask[:,-1]=False
            ###最下面一行(是对的)
            xy_attn_mask = torch.zeros(
                (1, x_len + y_len), dtype=torch.bool, device=xy_pos.device
            )
            
        if (None in idx_list):
            for i in range(x.shape[0]):
                if idx_list[i] is None:
                    idx_list[i] = 1500-1  ###如果没有生成到EOS,就用最大长度代替
                    
        if ref_free:
            return y_list, [0]*x.shape[0]
        return y_list, idx_list