Spaces:
Running
Running
File size: 6,406 Bytes
0bb3006 a217992 2e9f353 8100125 a217992 8100125 a217992 8100125 6ec040e 8100125 a217992 8100125 a217992 8100125 006bfbb a217992 afbf3d7 a217992 8100125 a217992 8100125 81c5b54 2e6366e 8100125 b68c9a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import gradio as gr
from prompt_refiner import PromptRefiner
from variables import models, explanation_markdown
from custom_css import custom_css
class GradioInterface:
def __init__(self, prompt_refiner: PromptRefiner, custom_css):
self.prompt_refiner = prompt_refiner
with gr.Blocks(css=custom_css, theme=gr.themes.Default()) as self.interface:
with gr.Column(elem_classes=["container", "title-container"]):
gr.Markdown("# PROMPT++")
gr.Markdown("### Automating Prompt Engineering by Refining your Prompts")
gr.Markdown("Learn how to generate an improved version of your prompts.")
gr.HTML(
"<p style='text-align: center; color:orange;'>⚠ This space is in progress, and we're actively working on it, so you might find some bugs! Please report any issues you have in the Community tab to help us make it better for all.</p>"
)
with gr.Column(elem_classes=["container", "input-container"]):
prompt_text = gr.Textbox(
label="Type your prompt (or let it empty to see metaprompt)",
lines=5
)
meta_prompt_choice = gr.Radio(
["star","done","physics","morphosis", "verse", "phor","bolism","math","arpe"],
label="Choose Meta Prompt",
value="star",
elem_classes=["no-background", "radio-group"]
)
refine_button = gr.Button("Refine Prompt")
with gr.Row(elem_classes=["container2"]):
with gr.Accordion("Examples", open=False):
gr.Examples(
examples=[
["Write a story on the end of prompt engineering replaced by an Ai specialized in refining prompts.", "done"],
["Tell me about that guy who invented the light bulb", "physics"],
["Explain the universe.", "star"],
["What's the population of New York City and how tall is the Empire State Building and who was the first mayor?", "morphosis"],
["List American presidents.", "verse"],
["Explain why the experiment failed.", "morphosis"],
["Is nuclear energy good?", "verse"],
["How does a computer work?", "phor"],
["How to make money fast?", "done"],
["how can you prove IT0's lemma in stochastic calculus ?", "arpe"],
],
inputs=[prompt_text, meta_prompt_choice]
)
with gr.Accordion("Meta Prompt explanation", open=False):
gr.Markdown(explanation_markdown)
with gr.Column(elem_classes=["container", "analysis-container"]):
gr.Markdown(' ')
gr.Markdown("### Initial prompt analysis")
analysis_evaluation = gr.Markdown()
gr.Markdown("### Refined Prompt")
refined_prompt = gr.Textbox(
label="Refined Prompt",
interactive=True,
show_label=True,
show_copy_button=True,
)
gr.Markdown("### Explanation of Refinements")
explanation_of_refinements = gr.Markdown()
with gr.Column(elem_classes=["container", "model-container"]):
with gr.Row():
apply_model = gr.Dropdown(models,
value="meta-llama/Llama-3.1-8B-Instruct",
label="Choose the Model",
container=False,
scale=1,
min_width=300
)
apply_button = gr.Button("Apply MetaPrompt")
gr.Markdown("### Prompts on choosen model")
with gr.Tabs():
with gr.TabItem("Original Prompt Output"):
original_output = gr.Markdown()
with gr.TabItem("Refined Prompt Output"):
refined_output = gr.Markdown()
with gr.Accordion("Full Response JSON", open=False, visible=True):
full_response_json = gr.JSON()
refine_button.click(
fn=self.refine_prompt,
inputs=[prompt_text, meta_prompt_choice],
outputs=[analysis_evaluation, refined_prompt, explanation_of_refinements, full_response_json]
)
apply_button.click(
fn=self.apply_prompts,
inputs=[prompt_text, refined_prompt, apply_model],
outputs=[original_output, refined_output],
api_name="apply_prompts"
)
def refine_prompt(self, prompt: str, meta_prompt_choice: str) -> tuple:
initial_prompt_evaluation, refined_prompt, explanation_refinements, full_response = self.prompt_refiner.refine_prompt(prompt, meta_prompt_choice)
analysis_evaluation = f"\n\n{initial_prompt_evaluation}"
return (
analysis_evaluation,
refined_prompt,
explanation_refinements,
full_response
)
def apply_prompts(self, original_prompt: str, refined_prompt: str, model: str):
try:
original_output = self.prompt_refiner.apply_prompt(original_prompt, model)
refined_output = self.prompt_refiner.apply_prompt(refined_prompt, model)
return original_output, refined_output
except Exception as e:
return f"Error: {str(e)}", f"Error: {str(e)}"
def launch(self, share=False):
self.interface.launch(share=share)
if __name__ == '__main__':
# Initialize the prompt refiner with API token
prompt_refiner = PromptRefiner(api_token)
# Create the Gradio interface
gradio_interface = GradioInterface(prompt_refiner, custom_css)
# Launch the interface
gradio_interface.launch(share=True) |